资源简介 12.2.2 三角形全等的判定(SAS)导学案学习目标:1.复习三角形全等的判定方法“SSS”;2、探索并正确理解三角形全等的判定方法“SAS”;3、会用“SAS”判定方法证明两个三角形全等及进行简单的应用;4、了解“SSA”不能作为两个三角形全等的条件。学习重难点:重难点:掌握一般三角形全等的判定方法SAS.、运用全等三角形的判定方法解决证明线段或角相等的问题。探究新知:探究点1:三角形全等的判定定理2--“边角边”问题:两个三角形的两边和一角分别相等有几种情形?列举说明.活动:先任意画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?你能得出什么结论?追问1:你是如何使∠A’=∠A的 结合这个问题,给出画△A’B’C’的方法.追问2:回忆作图过程,这两个三角形全等是满足哪三个条件?要点归纳: 相等的两个三角形全等(简称“边角边”或“SAS”).几何语言:如图,如果典例精析例1:【教材变式】已知:如图,AB=CB,∠1= ∠2. 求证:(1) AD=CD;(2) DB 平分∠ADC.变式:已知:AD=CD,DB平分∠ADC ,求证:∠A=∠C.例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么 针对训练如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB.探究点2:“边边角”不能作为判定三角形全等的依据做一做:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?画一画:画△ABC 和△DEF,使∠B =∠E =30°, AB =DE=5 cm ,AC =DF =3 cm .观察所得的两个三角形是否全等?把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?要点归纳:有两边和其中一边的对角分别相等的两个三角形_________全等.例2:下列条件中,不能证明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DFD.BC=EF,∠C=∠F,AC=DF我的收获__________________________________________________________________________________________________________________________________________________________ 展开更多...... 收起↑ 资源预览