2023高考物理一轮讲义——25.带电粒子在组合场中运动26.带电粒子在复合场中的运动(word版含答案)

资源下载
  1. 二一教育资源

2023高考物理一轮讲义——25.带电粒子在组合场中运动26.带电粒子在复合场中的运动(word版含答案)

资源简介

带电粒子在组合场中运动
——高考一轮备考
【知识方法】
1.组合场,指电场、磁场、重力场有两种场同时存在,但各位于一定的区域内且并不重叠,且带电粒子在一个场中只受一种场力的作用.
2.解题思路
(1) 分别研究带电粒子在不同场中的运动规律,在匀强磁场中做匀速圆周运动,在匀强电场中,若速度方向与电场方向在同一直线上,则做匀变速直线运动,若进入电场时的速度方向与电场方向垂直,则做类平抛运动.根据不同的运动规律分别求解.
(2)带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理.
(3) 注意分析磁场和电场边界处或交接点位置粒子速度的大小和方向,把粒子在两种不同场中的运动规律有机地联系起来.
【考点例题】
【例题1】(多选)(2020·全国高三)如图是一种回旋式加速器的简化模型图,半径为R的真空圆形区域内存在垂直纸面的匀强磁场,磁感应强度为B,圆心O正下方P点处有一极窄的平行金属板,两板间加有脉冲电压(大小为U)用于加速某质量为m,电荷量为q的正电荷,粒子由金属板间右侧小孔飘入(初速度视为零),经加速后,水平向左射入磁场,当粒子加速到需要的速度时,通过磁屏蔽导流管MN将粒子沿导流管轴线引出。导流管可沿PQ直线平移,其N端始终在PQ线上,PQ与水平线EF之间的夹角为θ。,不计粒子重力、粒子加速时间及其做圆周运动产生的电磁辐射,不考虑相对论效应。则下列说法正确的是( )
A.为使粒子在经过平行金属板间时总能被加速,板间电场方向应随时间周期性变化
B.粒子能获得的最大速度
C.粒子加速完后导出时导流管MN与水平线EF之间的夹角为2θ
D.该加速器加速比荷相同的带电粒子时,从开始加速直至以最大速度引出,在磁场中运动的时间一定相同
【例题2】(多选)如图所示,两个边长为2L的正方形PQMN和HGKJ区域内有垂直纸面向外的匀强磁场,磁感应强度大小分别为B1和B2,两磁场区域中间夹有两个宽度为L、方向水平且相反、场强大小均为E的匀强电场,两电场区域分界线经过PN、GK的中点.一质量为m、电荷量为q的带正电粒子(不计重力)从G点由静止释放,经上方电场加速后通过磁场回旋,又经历下方电场沿NK二次加速后恰好回到G点,则下列说法正确的是
A.B2=2B1
B.带电粒子第二次进入右边磁场后一定从MN边离开
C.第一次完整回旋过程经历的时间为
D.要实现两次以上的回旋过程,可以同时增大两磁场的磁感应强度
【例题3】(2020·全国高三)如图所示,在平面直角坐标系内,第I象限的等腰三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场。一质量为m带电荷量为q的带电粒子从电场中Q(-2h,-h)点以速度v0水平向右射出,经坐标原点O射入第I象限,最后以垂直于PM的方向射出磁场。已知MN平行于x轴,NP垂直于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:
(1)电场强度的大小;
(2)磁感应强度的大小;
(3)粒子在磁场中的运动时间。
【例题4】(2020·定远)如图所示,直线与y轴之间有垂直于xOy平面向外的匀强磁场B2,直线x=d与间有沿y轴负方向的匀强电场,电场强度,另有一半径R=m的圆形匀强磁场区域,磁感应强度B1=,方向垂直坐标平面向外,该圆与直线x=d和x轴均相切,且与x轴相切于S点.一带负电的粒子从S点沿y轴的正方向以速度v0进入圆形磁场区域,经过一段时间进入磁场区域B2,且第一次进入磁场B2时的速度方向与直线垂直.粒子速度大小v0=1.0×105m/s,粒子的比荷为=5.0×105C/kg,粒子重力不计.求:
(1)粒子在圆形匀强磁场中运动的时间t1;
(2)坐标d的值;
(3)要使粒子无法运动到x轴的负半轴,则磁感应强度B2应满足的条件
【例题5】用量子技术生产十字元件时用到了图甲中的装置:均半径为R的光滑绝缘圆柱体的横截面,它们形成四个非常细窄的狭缝a、b、c、d和一个类十字空腔,圆柱和空腔所在的区域均存在垂直纸面向里的匀强磁场,磁感应强度B的大小可调节,质量为m、电荷量为q、速度为的带正电离子,从狭缝a处射入空腔内,速度方向在纸面内且与两圆相切。设离子在空腔内与圆柱体最多只发生一次碰撞,碰撞时间极短且速度大小不变;速度方向的改变遵循光的反射定律。
(1)若B的大小调节为,离子从何处离开空腔?并求出它在磁场中运动的时间t;
(2)为使离子从狭缝d处离开空腔,B应调至多大?
(3)当从狭缝d处射出的离子垂直极板从A孔进入由平行金属板M、N构成的接收器时,两板间立即加上图乙所示变化周期为T的电压。则认为多大时,该离子将不会从B孔射出?两板相距L(L>vT),板间可视为匀强电场。
【参考答案】
【例题1】【答案】BCD
【解析】A.因粒子每次过平行金属板间都是自右向左运动,为使粒子都能加速,粒子每次过平行金属板间时板间电场方向均应水平向左,故A错误;
BC.由题意,当粒子速度最大时,其做由圆的几何知圆周运动的最大半径,根据洛伦兹力提供向心力有解得,由圆的几何知识可知,导流管MN与水平线EF之间的夹角为2θ,故BC正确;
D.设加速电压为U,粒子加速n次后达到,由动能定理有
得,带电粒子在磁场中运动的周期,带电粒子在磁场中运动的时间
可知带电粒子比荷相同时在磁场中运动的时间相同,故D正确。
【例题2】【答案】BCD
【解析】带电粒子在电场中第一次加速有,在右边磁场中做匀速圆周运动的向心力由洛伦兹力提供,有 解得 带电粒子在电场中第二次加速有 带电粒子在左边磁场中做圆周运动回到G点,有,解得 ,故有 ,选项A错误;由带电粒子在电场中第三次加速有得, 则粒子第二次在右边磁场中做圆周运动的半径为,,故带电粒子一定从MN边射出磁场,选项B正确;把带电粒子在电场中两次加速的过程等效成一次连续的加速过程,则在电场中加速的时间为,在右边磁场中运动的时间为,在左边磁场中运动的时间为,故第一次完整的回旋时间为,选项C正确;因为磁感应强度B越大,带电粒子在磁场中做匀速圆周运动的半径越小,故可以同时增大两边磁场的磁感应强度,选项D正确.
【例题3】【答案】(1) ;(2) ;(3)
【解析】(1)由几何关系可知粒子的水平位移为2h,竖直位移为h,由类平抛运动规律得
由牛顿第二定律可知
联立解得
(2)粒子到达O点,沿y铀正方向的分速度
则速度与x轴正方向的夹角α满足

粒子从MP的中点垂直于MP进入磁场,垂直于NP射出磁场,粒子在磁场中的速度
轨道半径
洛伦兹力提供向心力
解得
(3)带电粒子在磁场中圆周运动的周期
带电粒子在磁场中转过的角度为,故运动时间
【例题4】【答案】(1)2.6×10﹣6s(2)4m(3)0≤B2≤0.13T或者B2≥0.3T
【解析】(1)在磁场B1中
解得
画出轨迹恰为四分之一圆,

(2)在电场中类平抛运动
解得
又根据 x=v0t
解得
所以坐标d的值
(3)进入磁场B2的速度为:
当带电粒子出磁场与y轴垂直时,圆周半径
可得
所以 0≤B2≤0.13T.
当带电粒子出磁场与y轴相切时,圆周半径
可得 B2=0.3T
所以 B2≥0.3T.
【例题5】【答案】(1)(2)(3)
【解析】(1)离子在磁场中做圆周运动,洛伦兹力作向心力,所以有
所以
粒子做圆周运动的周期
因为离子在a点向上偏转,则离子从狭缝b离开空腔,它在磁场在运动的时间:
(2)因为离子在a点的圆心位于a点的上方,又有离子在空腔内与圆柱体最多只发生一次碰撞,碰撞时间极短且速度大小不变;速度方向的改变遵循光的反射定律,所以粒子必与圆柱体碰撞一次, 且碰撞位置在狭缝a、d的垂直平分线上,则如图所示:
则有
所以
又有
所以
(3)研究临界情况:离子刚好不从B孔射出,设离子进入电场后经过时间速度减为0,离子向下减速的位移为:
离子再向上先加速后减速的总位移为:
临界情况下
即:
解得
又由于
解得
所以,为使离子不从B孔射出,U0应满足的条件是:带电粒子在复合场中的运动
——高考一轮备考
【知识方法】
1.概述
带电粒子在复合场中的运动问题是电磁学知识和力学知识的结合,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力、洛伦兹力.因此,带电粒子在复合场中的运动问题除了利用动力学观点、能量观点来分析外,还要注意电场和磁场对带电粒子的作用特点,如电场力做功与路径无关,洛伦兹力方向始终和运动方向垂直且永不做功等.
2.处理方法
(1)弄清叠加场的组成特点。
(2)正确分析带电粒子的受力及运动特点。
(3)画出粒子的运动轨迹,灵活选择不同的运动规律。
①若只有两个场,合力为零,则表现为匀速直线运动或静止状态。
②若受三种场力时,合力为零,粒子做匀速直线运动,其中洛伦兹力F=qvB的方向与速度v的方向垂直。
③若三场共存时,粒子做匀速圆周运动时,则有mg=qE,粒子在洛伦兹力作用下做匀速圆周运动,即。
④当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解。
【考点例题】
【例题1】(2022·广元天立国际学校)如图所示,一电子束沿垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是(  )
A.将变阻器滑动头P向右滑动
B.将变阻器滑动头P向左滑动
C.将极板间距离适当减小
D.将极板间距离适当增大
【例题2】(2020·全国)磁流体发电的原理如图所示.将一束速度为v的等离子体垂
直于磁场方向喷入磁感应强度为B的匀强磁场中,在相距为d、宽为a、长为b的两平行金属板间便产生电压.如果把上、下板和电阻R连接,上、下板就是一个直流电源的两极.若稳定时等离子体在两板间均匀分布,电阻率为ρ.忽略边缘效应,下列判断正确的是( )
A.上板为正极,电流
B.上板为负极,电流
C.下板为正极,电流
D.下板为负极,电流
【例题3】(2020·定远)如图所示为一种获得高能粒子的装置一环形加速器,环形区域内存在垂直纸面向外的可变匀强磁场,质量为m、电荷量为+q的粒子在环中做半径为R的圆周运动,A,B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为+U,B板电势仍保持为零,设粒子的初速度为零,在两极板间的电场中加速,每当粒子离开电场区域时,A板电势又降为零,粒子在电场多次加速下动能不断增大,而在环形区域内绕中心运动的半径不变(设极板间距远小于R),粒子重力不计,下列关于环形加速器的说法中正确的是
A.加速器对带正电粒子顺时针加速,对带负电粒子加速需要升高B板电势
B.电势U越高,粒子最终的速度就越大
C.粒子每次绕行一圈所需的时间tn与加速次数n之间的关系为
D.环形区域内的磁感应强度大小Bn与加速次数n之间的关系为
【例题4】(多选)(2020·江苏高三)在一个很小的矩形半导体薄片上,制作四个电极E、F、M、N,做成了一个霍尔元件,在E、F间通入恒定电流I,同时外加与薄片垂直的磁场B,M、N间的电压为UH.已知半导体薄片中的载流子为正电荷,电流与磁场的方向如图所示,下列说法正确的有(  )
A.N板电势高于M板电势
B.磁感应强度越大,MN间电势差越大
C.将磁场方向变为与薄片的上、下表面平行,UH不变
D.将磁场和电流分别反向,N板电势低于M板电势
【例题5】(多选)(2022·全国)电磁泵在生产、科技中得到了广泛应用.如图所示的电磁泵泵体是一个长方体,ab边长为L1,两侧端面是边长为L2的正方形;流经泵体的液体密度为ρ,在泵体通入导电剂后液体的电导率为σ(电阻率的倒数),泵体所在处有方向垂直前表面向外的匀强磁场,磁感应强度为B,把泵体的上、下两表面接在电压为U(内阻不计)的电源上,则( )
A.泵体上表面应接电源正极
B.通过泵体的电流I=
C.增大磁感应强度可获得更大的抽液高度h
D.增大液体的电导率可获得更大的抽液高度h
【例题6】(多选)(2020·全国)质谱仪是一种测量带电粒子质量和分析同位素的重要工具,它的构造原理如图,离子源A产生电荷量相同而质量不同的离子束(初速度可视为零),从狭缝S1进入电场,经电压为U的加速电场加速后,再通过狭缝S2从小孔垂直MN射入圆形匀强磁场。该匀强磁场的磁感应强度为B,方向垂直于纸面向外,半径为R,磁场边界与直线MN相切E为切点。离子离开磁场最终到达感光底片MN上,设离子电荷量为g,到达感光底片上的点与E点的距离为x,不计重力,可以判断(  )
A.离子束带负电
B.x越大,则离子的比荷一定越大
C.到达处的离子在匀强磁场运动时间为
D.到达处的离子质量为
【例题7】(2020·厦门六中)如图所示,半径 R =3.6 m 的光滑绝缘圆弧轨道,位于竖直平面内,与长L=5 m的绝缘水平传送带平滑连接,传送带以v =5 m/s的速度顺时针转动,传送带右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度E=20 N/C,磁感应强度B=2.0 T,方向垂直纸面向外.a为m1=1.0×10-3 kg的不带电的绝缘物块,b为m2=2.0×10-3kg、q=1.0×10-3C带正电的物块.b静止于圆弧轨道最低点,将a物块从圆弧轨道顶端由静止释放,运动到最低点与b发生弹性碰撞(碰后b的电量不发生变化).碰后b先在传送带上运动,后离开传送带飞入复合场中,最后以与水平面成60°角落在地面上的P点(如图),已知b物块与传送带之间的动摩擦因数为μ=0.1.( g 取10 m/s2,a、b 均可看做质点)求:
(1)物块 a 运动到圆弧轨道最低点时的速度及对轨道的压力;
(2)传送带上表面距离水平地面的高度;
(3)从b开始运动到落地前瞬间, b运动的时间及其机械能的变化量.
【例题8】(2022·河北)如图所示,平行板电容器的两极板、与水平地面成角,电势差为。建立平面直角坐标系,电容器极板边缘无限靠近坐标原点,在(,)处是一垂直轴的荧光屏。在区域有竖直向上的匀强电场,场强,在平面内以(,)点为圆心,半径为的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度,一质量,电量的带电粒子,从A(,0)点(即电容器两极板间距离的中点)由静止开始运动,它能沿轴作直线运动,到达坐标原点后进入电磁复合场,粒子最终打在荧光屏上点,,,,
(1)求两极板间电势差以及极板电性;
(2)粒子到达坐标原点O时的速度;
(3)粒子从A点到N点所用时间(该问结果保留一位有效数字)。
【参考答案】
【例题1】【答案】D
【解析】根据电路图可知:A板带正电,B板带负电,所以电子束受到电场力的方向向上,大小洛伦兹力方向向下,,电子向上偏,说明电场力大于洛伦兹力,要使电子束沿射入方向做直线运动,则要电场力等于洛伦兹力,所以要减小电场力;
AB、将变阻器滑动头P向右或向左移动时,电容器两端电压不变,电场力不变,故AB错误;
C、将极板间距离适当减小时,增大,不满足要求,故C错误;
D、将极板间距离适当增大时,减小,满足要求,故D正确.
【例题2】【答案】C
【解析】根据左手定则,正电荷受到的洛伦兹力方向向下,负电荷受到的洛伦兹力向上,因此下极板为电源的正极,根据平衡有,解得稳定时电源的电动势,则流过R的电流为,而,,则得电流大小为,C正确.
【例题3】【答案】D
【解析】A项:由左手定则可知,加速器对带正电粒子顺时针加速,带负电粒子逆时针加速即可,所以对带负电的粒子加速不需要升高B板电势,故A错误;
B项:由于粒子做半径不变的圆周运动,由公式,解得:,所以粒子最终的速度与U无关,故B错误;
C项:粒子绕行n圈获得的动能等于电场力对粒子做的功,设粒子绕行n圈获得的速度为,由动能定理得:,解得:,粒子绕行第n圈的时间为,所以,故C错误;
D项:粒子在环形区域磁场中,由公式,解得:,所以,故D正确。
【例题4】【答案】AB
【解析】A、根据左手定则,电流的方向向里,自由电荷受力的方向指向N端,向N端偏转,则N点电势高,故A正确;B、设左右两个表面相距为d,电子所受的电场力等于洛仑兹力,设材料单位体积内电子的个数为n,材料截面积为s,则 ①;I=nesv ②; s=dL ③;由①②③得:,令,则 ④;所以若保持电流I恒定,则M、N间的电压与磁感虑强度B成正比,故B正确;C、将磁场方向变为与薄片的上、下表面平行,则带电粒子不会受到洛伦兹力,因此不存在电势差,故C错误;D、若磁场和电流分别反向,依据左手定则,则N板电势仍高于M板电势,故D错误.故选AB.
【例题5】【答案】ACD
【解析】A.当泵体上表面接电源的正极时,电流从上向下流过泵体,这时液体受到的磁场力方向水平向左,故A正确;
B.根据电阻定律可知,泵体内液体的电阻
因此流过泵体的电流I=UL1σ,故B错误;
C.增大磁感应强度B,液体受到的磁场力变大,可获得更大的抽液高度,故C正确;
D.若增大液体的电导率,可以使电流增大,液体受到的磁场力变大,可获得更大的抽液高度,故D正确。
【例题6】【答案】CD
【解析】带电粒子在加速电场中做匀加速直线运动,设加速后的速度大小为v,根据动能定理有:,解得:,然后匀速运动到E点进入有界磁场中,其运动轨迹如下图所示:
粒子从E点先沿虚线圆弧,再沿直线做匀速直线运动到N点。由左手定则,粒子是正电。故A错误;由,则,x越大则r越大,则比荷越小,故B错误;在△ENO中,解得:θ=60°,设带电粒子运动的轨迹圆的半径为r,根据数学知识有:,解得:,由,由几何关系圆弧圆心角α=120°,联立可得: ,故CD正确。
【例题7】【答案】
(1) , 方向竖直向下 (2) (3)见解析
【解析】(1)a物块从释放运动到圆弧轨道最低点C时,机械能守恒,
得:v C=6 m/s
在C点,由牛顿第二定律:
解得:
由牛顿第三定律,a物块对圆弧轨道压力: ,方向竖直向下.
(2)a、b碰撞动量守
a、b碰撞能量守恒
解得(,方向水平向左.可不考虑)
b在传送带上假设能与传送带达到共速时经过的位移为s,
得: 加速1s后,匀速运动0.1s,在传送带上运动,所以b离开传送带时与其共速为
进入复合场后,,所以做匀速圆周运动

得:r==5m
由几何知识解得传送带与水平地面的高度:
(3)b的机械能减少为
b在磁场中运动的
b在传送带上运动;b运动的时间为
【例题8】【答案】(1)0.04V;P板带负电(2)1m/s(3)0.4s
【解析】(1)粒子在电容器间做匀加速直线运动,受力分析如图所示,可得:
根据几何关系得:
联立解得
粒子过磁场向上偏转,故带正电,粒子在电容器中受力指向板,故板带负电
(2)粒子在电容器中,由牛顿第二定律得:
解得粒子加速度
由运动学公式得:
(3)粒子在电磁复合场中静电力:
与重力平衡,粒子先在磁场中做匀速圆周运动,离开磁场后做匀速直线运动打到N点,如图所示,
根据牛顿第二定律和向心力公式得
圆周运动半径:
可得:
所以:

粒子做圆周运动时间为:
从到用时:
故粒子从点到点所用时间:

展开更多......

收起↑

资源列表