专题 线段垂直平分线的性质和判定【七大题型】(原卷+解析卷)

资源下载
  1. 二一教育资源

专题 线段垂直平分线的性质和判定【七大题型】(原卷+解析卷)

资源简介

中小学教育资源及组卷应用平台
专题 线段垂直平分线的性质和判定【七大题型】
【题型1 线段垂直平分线的性质在求线段中的应用】
【例1】(2022秋 南召县期末)已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE= 6 .
【分析】首先连接PB,PC,由∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,易得PE=PF,PB=PC,继而证得△PBE≌△PCF,AE=AF,又由AB=8,AC=4,即可求得答案.
【解答】解:连接PB,PC,
∵点P在BC的垂直平分线上,
∴PB=PC,
∵AC平分∠BAC,PE⊥AB,PF⊥AC,
∴PE=PF,∠PEB=∠PFC=90°,
∴∠APE=∠APF,
∴AE=AF,
在Rt△PBE和Rt△PCF中,

∴Rt△PBE≌Rt△PCF(HL),
∴BE=CF,
∵AB=AE+BE,AF=AC+CF,
∴AB=AC+CF+BE,
∵AB=8,AC=4,
∴BE=CF=2,
∴AE=AC+CF=6.
故答案为:6.
【变式1-1】(2022秋 潮安区期中)如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.
(1)判断△DBC的形状并证明你的结论.
(2)求证:BF=AC.
(3)试说明CEBF.
【分析】(1)根据已知条件得到∠BCD=45°,求得BD=CD,于是得到结论;
(2)根据全等三角形的性质和判定即可得到结论;
(3)根据线段垂直平分线的性质即可得到结论.
【解答】解:(1)△DBC是等腰直角三角形,
理由:∵∠ABC=45°,CD⊥AB,
∴∠BCD=45°,
∴BD=CD,
∴△DBC是等腰直角三角形;
(2)∵BE⊥AC,
∴∠BDC=∠BEC=90°,
∵∠BFD=∠CFE,
∴∠DBF=∠ACD,
在△BDF与△CDA中,

∴△BDF≌△CDA,
∴BF=AC;
(3)∵BE是AC的垂直平分线,
∴CEAC,
∴CEBF.
【变式1-2】(2022秋 庐阳区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.
【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.
【解答】解:DE=BF,DE⊥BF.理由如下:
连接BD,延长BF交DE于点G.
∵点D在线段AB的垂直平分线上,
∴AD=BD,
∴∠ABD=∠A=22.5°.
在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,
∴∠ABC=67.5°,
∴∠CBD=∠ABC﹣∠ABD=45°,
∴△BCD为等腰直角三角形,
∴BC=DC.
在△ECD和△FCB中,

∴Rt△ECD≌Rt△FCB(SAS),
∴DE=BF,∠CED=∠CFB.
∵∠CFB+∠CBF=90°,
∴∠CED+∠CBF=90°,
∴∠EGB=90°,即DE⊥BF.
【变式1-3】(2022秋 海珠区校级期中)△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.
(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;
(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.
【分析】(1)由D点在AC的垂直平分线上,可得AD=CD,又由∠ADB=60°,△ABC是等边三角形,可得△ABD是含30°角的直角三角形,继而证得结论;
(2)首先在DB上截取DE=AD,可证得△ADE是等边三角形,又由△ABC是等边三角形,易证得△BAE≌△CAD(SAS),继而证得结论.
【解答】证明:(1)∵D点在AC的垂直平分线上,
∴AD=CD,
∴∠DAC=∠DCA,∠ADB=∠CDB=60°,
∴∠DAC=30°,
∵△ABC是等边三角形,
∴∠BAC=60°,
∴∠BAD=90°,
∴∠ABD=90°﹣∠ADB=30°,
∴BD=2AD=AD+CD;
(2)成立.
理由:在DB上截取DE=AD,
∵∠ADB=60°,
∴△ADE是等边三角形,
∴AE=AD,∠EAD=60°,
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∴∠BAE=∠CAD,
在△BAE和△CAD中,

∴△BAE≌△CAD(SAS),
∴BE=CD,
∴BD=DE+BE=AD+CD.
【题型2 线段垂直平分线的性质在求角中的应用】
【例2】(2022秋 周村区校级期中)如图,线段AB,DE的垂直平分线交于点C,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD的度数为(  )
A.168° B.158° C.128° D.118°
【分析】连接CE,依据线段AB,DE的垂直平分线交于点C,可得CA=CB,CE=CD,判定△ACE≌△BCD,可得∠AEC=∠BDC,设∠AEC=∠BDC=α,则∠BDE=72°﹣α,∠CEB=92°﹣α,∠BED=∠DEC﹣∠CEB=72°﹣(92°﹣α)=α﹣20°,即可得到△BDE中,∠EBD=180°﹣(72°﹣α)﹣(α﹣20°)=128°.
【解答】解:如图,连接CE,
∵线段AB,DE的垂直平分线交于点C,
∴CA=CB,CE=CD,
∵∠ABC=∠EDC=72°=∠DEC,
∴∠ACB=∠ECD=36°,
∴∠ACE=∠BCD,
在△ACE和△BCD中,

∴△ACE≌△BCD(SAS),
∴∠AEC=∠BDC,
设∠AEC=∠BDC=α,则∠BDE=72°﹣α,∠CEB=92°﹣α,
∴∠BED=∠DEC﹣∠CEB=72°﹣(92°﹣α)=α﹣20°,
∴△BDE中,∠EBD=180°﹣(72°﹣α)﹣(α﹣20°)=128°,
故选:C.
【变式2-1】(2022秋 龙马潭区校级月考)如图,已知锐角△ABC中,AB、AC边的中垂线交于点O,∠A=α(0°<α<90°),
(1)求∠BOC;
(2)试判断∠ABO+∠ACB是否为定值?若是,求出定值,若不是,请说明理由.
【分析】(1)根据线段垂直平分线的性质得到AO=BO=CO,根据等腰三角形的性质得到∠OAB=∠OBA,∠OCA=∠OAC,根据周角定义即可得到结论;
(2)根据等腰三角形的性质得到∠OBC=∠OCB,于是得到∠OBC=90°﹣α,根据三角形的内角和即可得到结论.
【解答】解:(1)连接AO,
AB、AC边的中垂线交于点O,
∴AO=BO=CO,
∴∠OAB=∠OBA,∠OCA=∠OAC,
∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),
∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,
∴∠BOC=360°﹣(∠AOB+∠AOC)=2α;
(2)∠ABO+∠ACB为定值,
∵BO=CO,
∴∠OBC=∠OCB,
∵∠OAB=∠OBA,∠OCA=∠OAC,
∴∠OBC(180°﹣2∠BAC)=90°﹣α,
∵∠ABO+∠ACB+∠OBC+∠BAC=180°,
∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°.
【变式2-2】(2022秋 西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=(  )
A.50° B.80° C.90° D.100°
【分析】连接BO,并延长BO到P,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO=∠BEO=90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.
【解答】解:连接BO,并延长BO到P,
∵线段AB、BC的垂直平分线l1、l2相交于点O,
∴AO=OB=OC,∠BDO=∠BEO=90°,
∴∠DOE+∠ABC=180°,
∵∠DOE+∠1=180°,
∴∠ABC=∠1=40°,
∵OA=OB=OC,
∴∠A=∠ABO,∠OBC=∠C,
∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,
∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×40°=80°;
故选:B.
【变式2-3】(2022春 金牛区校级期中)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是:∠BOC= 4∠BPC﹣360° .
【分析】根据三角形角平分线的性质以及三角形内角和定理,即可得到∠BAC=2∠BPC﹣180°;再根据三角形垂直平分线的性质以及三角形内角和定理,即可得到∠BOC=2∠BAC,进而得出∠BOC和∠BPC的数量关系.
【解答】解:∵BP平分∠ABC,CP平分∠ACB,
∴∠PBC∠ABC,∠PCB∠ACB,
∴∠BPC=180°﹣(∠PBC+∠PCB)
=180°﹣( ∠ABC∠ACB)
=180°(∠ABC+∠ACB)
=180°(180°﹣∠BAC)
=90°∠BAC,
即∠BAC=2∠BPC﹣180°;
如图,连接AO.
∵点O是这个三角形三边垂直平分线的交点,
∴OA=OB=OC,
∴∠OAB=∠OBA,∠OAC=∠OCA,∠OBC=∠OCB,
∴∠AOB=180°﹣2∠OAB,∠AOC=180°﹣2∠OAC,
∴∠BOC=360°﹣(∠AOB+∠AOC)
=360°﹣(180°﹣2∠OAB+180°﹣2∠OAC),
=2∠OAB+2∠OAC
=2∠BAC
=2(2∠BPC﹣180°)
=4∠BPC﹣360°,
故答案为:4∠BPC﹣360°.
【题型3 线段垂直平分线的性质在实际中的应用】
【例3】(2022秋 甘井子区期末)如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建在(  )
A.A处 B.B处 C.C处 D.D处
【分析】根据线段垂直平分线的性质得出即可.
【解答】解:
根据作图可知:EF是线段MN的垂直平分线,
所以EF上的点到M、N的距离相等,
即发射塔应该建在C处,
故选:C.
【变式3-1】(2022春 浑南区期末)有A、B、C三个不在同一直线上的居民点,现要选址建一个新冠疫苗接种点方便居民接种疫苗,要求接种点到三个居民点的距离相等,接种点应建在(  )
A.△ABC的三条中线的交点处
B.△ABC三边的垂直平分线的交点处
C.△ABC三条角平分线的交点处
D.△ABC三条高所在直线的交点处
【分析】根据线段垂直平分线的性质可得到正确选项.
【解答】解:∵线段垂直平分线的点到线段两段点的距离相等,
∴△ABC三边的垂直平分线的交点到三角形三个顶点的距离相等.
故选:B.
【变式3-2】(2022春 武功县期末)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在△ABC(  )
A.三条中线的交点
B.三条高的交点
C.三条边的垂直平分线的交点
D.三个角的角平分线的交点
【分析】用线段垂直平分线性质判断即可.
【解答】解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条边垂直平分线的交点.
故选:C.
【变式3-3】如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应该修建在(  )
A.∠1的平分线和线段AB的交点处
B.∠1的平分线和线段AB的垂直平分线的交点处
C.∠2的平分线和线段AB的交点处
D.∠2的平分线和线段AB的垂直平分线的交点处
【分析】由线段垂直平分线的性质可知:要两个城镇A,B的距离,发射塔必须建在线段AB的垂直平分线上,再根据角平分线的性质可知要到两条高速公路m和n的距离相等需要建在∠1的平分线上,即可知发射塔要在两线的交点位置.
【解答】解:要两个城镇A,B的距离,发射塔必须建在线段AB的垂直平分线上,要到两条高速公路m和n的距离相等需要建在∠1的平分线上,
∴发射塔应该修建在∠1的平分线和线段AB的垂直平分线的交点处.
故选:B.
【题型4 线段垂直平分线的性质的综合运用】
【例4】(2022秋 广陵区校级月考)在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
(1)如图(1),连接AM、AN,求∠MAN的度数;
(2)如图(2),如果AB=AC,求证:BM=MN=NC.
【分析】(1)由在△ABC中,∠BAC=130°,可求得∠C+∠B的度数,然后由AB、AC的垂直平分线分别交BC于点M、N,根据线段垂直平分线的性质,可得BM=AM,CN=AN,即可得∠CAN=∠C,∠BAM=∠B,继而求得∠CAN+∠BAM的度数,则可求得答案;
(2)先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.
【解答】(1)解:
∵∠BAC=120°,
∴∠B+∠C=60°,
由(1)证得BM=AM,CN=AN,
∴∠C=∠CAN,∠B=∠BAM,
∴∠CAN+∠BAM=∠C+∠B=60°,
∴∠MAN=120°﹣60°=60°;
(2)证明:
∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
∴BM=AM,CN=AN,
∴∠MAB=∠B,∠CAN=∠C,
∵∠BAC=120°,AB=AC,
∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,
∴△AMN是等边三角形,
∴AM=AN=MN,
∴BM=MN=NC.
【变式4-1】(2022秋 鄂托克旗期中)如图,在△ABC中,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.
(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;
(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.
【分析】(1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD=BD,进而可得∠ABD=∠A=40°,然后可得答案;
(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC的周长为30cm可得AB长,进而可得答案.
【解答】解:(1)∵∠ABC=∠C,∠A=40°,
∴∠ABC=(180°﹣40°)÷2=70°.
∵DE是边AB的垂直平分线,
∴AD=DB,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.
(2)∵DE是边AB的垂直平分线,
∴AD=DB,AE=BE,
∵△BCD的周长为18cm,
∴AC+BC=AD+DC+BC=DB+DC+BC=18cm.
∵△ABC的周长为30cm,
∴AB=30﹣(AC+BC)=30﹣18=12cm,
∴BE=12÷2=6cm.
【变式4-2】(2022春 市中区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;
(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.
【解答】解:(1)∵DM、EN分别垂直平分AC和BC,
∴AM=CM,BN=CN,
∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,
∵△CMN的周长为15cm,
∴AB=15cm;
(2)∵∠MFN=70°,
∴∠MNF+∠NMF=180°﹣70°=110°,
∵∠AMD=∠NMF,∠BNE=∠MNF,
∴∠AMD+∠BNE=∠MNF+∠NMF=110°,
∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
∵AM=CM,BN=CN,
∴∠A=∠ACM,∠B=∠BCN,
∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
【变式4-3】(2022秋 红花岗区校级月考)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.
(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;
(2)若EF=4,BF:FD=5:3,S△BCF=10,求点D到AB的距离.
【分析】(1)根据角平分线定义求出∠ABC=2∠ABD=48°,∠DBC=∠ABD=24°,根据三角形内角和定理求出∠ACB,根据线段垂直平分线性质求出FC=FB,求出∠FCB,即可求出答案;
(2)过D作DG⊥AB于G,DH⊥BC于H,根据角平分线的性质得到DG=DH,利用面积法求出BC,DH即可.
【解答】解:(1)∵BD平分∠ABC,∠ABD=24°,
∴∠ABC=2∠ABD=48°,∠DBC=∠ABD=24°,
∵∠A=60°,
∴∠ACB=180°﹣∠A﹣∠ACB=180°﹣60°﹣48°=72°,
∵FE是BC的中垂线,
∴FB=FC,
∴∠FCB=∠DBC=24°,
∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°;
(2)过D作DG⊥AB于G,DH⊥BC于H,
∵BD平分∠ABC,
∴DG=DH,
∵EF⊥BC,EF=4,
∴S△BCF BC EF=10,
∴BC=5,
∵BF:DF=5:3,
∴S△BDCS△BCF=16,
∴5×DH=16,
∴DH,
∴DG=DH,
∴点D到AB的距离.
【知识点2 线段垂直平分线的判定】
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,(这样的点需要找两个)
【题型5 线段垂直平分线的判定】
【例5】(2022秋 伊川县期末)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度数;
(2)求证:直线AD是线段CE的垂直平分线.
【分析】(1)在Rt△ADE中,求出∠EAD即可解决问题;
(2)只要证明AE=AC,利用等腰三角形的性质即可证明;
【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,
∴∠EAD∠BAC=25°,
∵DE⊥AB,
∴∠AED=90°,
∴∠EDA=90°﹣25°=65°.
(2)证明:∵DE⊥AB,
∴∠AED=90°=∠ACB,
又∵AD平分∠BAC,
∴∠DAE=∠DAC,
∵AD=AD,
∴△AED≌△ACD,
∴AE=AC,
∵AD平分∠BAC,
∴AD⊥CE,AD平分线段EC,
即直线AD是线段CE的垂直平分线.
【变式5-1】(2022秋 奈曼旗期中)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.
【分析】求出DE=DF,∠AED=∠AFD=90°,根据HL证Rt△AED≌Rt△AFD,推出AE=AF,根据等腰三角形性质推出即可.
【解答】证:∵AD是∠BAC的平分线,
DE⊥AB,DF⊥AC,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中

∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD是∠BAC的平分线,
∴AD垂直平分EF.
【变式5-2】(2022春 市北区期末)如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.
求证:(1)OC=OD,
(2)OE是线段CD的垂直平分线.
【分析】(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OC=OD即可;
(2)由等腰三角形的性质即可得出OE是CD的垂直平分线.
【解答】证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴DE=CE,OE=OE,
在Rt△ODE与Rt△OCE中,,
∴Rt△ODE≌Rt△OCE(HL),
∴OC=OD;
(2)∵△DOC是等腰三角形,
∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线.
【变式5-3】(2022秋 平邑县期中)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.
(1)求证:AD平分∠BAC;
(2)连接EF,求证:AD垂直平分EF.
【分析】(1)由于D是BC的中点,那么BD=CD,而BE=CF,DE⊥AB,DF⊥AC,利用HL易证Rt△BDE≌Rt△CDF,可得DE=DF,利用角平分线的判定定理可知点D在∠BAC的平分线上,即AD平分∠BAC;
(2)根据全等三角形的性质即可得到结论.
【解答】解:(1)∵D是BC的中点
∴BD=CD,
又∵BE=CF,DE⊥AB,DF⊥AC,
∴Rt△BDE≌Rt△CDF,
∴DE=DF,
∴点D在∠BAC的平分线上,
∴AD平分∠BAC;
(2)∵Rt△BDE≌Rt△CDF,
∴∠B=∠C,
∴AB=AC,
∵BE=CF,
∴AB﹣BE=AC﹣CF,
∴AE=AF,
∵DE=DF,
∴AD垂直平分EF.
【题型6 线段垂直平分线的作法】
【例6】(2022秋 武城县期末)已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.
【分析】(1)分别以点A、C为圆心,以大于AC长度为半径画弧,两弧在AC两边相交于,然后过这两点作直线DE即可;
(2)连接CE,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,设∠A=x,然后根据等边对等角的性质以及等腰三角形两底角相等表示出∠ACB,然后列出方程求解即可.
【解答】解:(1)如图所示,DE即为所求作的边AC的垂直平分线;
(2)如图,连接CE,
∵DE是AC的垂直平分线,
∴AE=CE,
∴∠A=∠ACE,
∵AE=BC,
∴CE=BC,
∴∠B=∠CEB,
设∠A=x,
则∠CEB=∠A+∠ACE=x+x=2x,
在△BCE中,∠BCE=180°﹣2×2x=180°﹣4x,
∴∠ACB=∠ACE+∠BCE=x+180°﹣4x=120°,
解得x=20°,
即∠A=20°.
【变式6-1】(2022秋 祁阳县期末)如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为(  )
A.8 B.10 C.18 D.20
【分析】首先根据题意可得MN是AB的垂直平分线,由线段垂直平分线的性质可得AD=BD,再根据△ADC的周长为10可得AC+BC=10,又由条件AB=8可得△ABC的周长.
【解答】解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.
∴MN是AB的垂直平分线,
∴AD=BD,
∵△ADC的周长为10,
∴AC+AD+CD=AC+BD+CD=AC+BC=10,
∵AB=8,
∴△ABC的周长为:AC+BC+AB=10+8=18.
故选:C.
【变式6-2】(2022 榆林模拟)如图,在△ABC中,DE⊥BC于点D,交AB于点E.请用尺规作图法,在线段DC上求作一点P,使AP∥ED.(保留作图痕迹,不写作法)
【分析】过点A作AP⊥BC于点P,即可解决问题.
【解答】解:如图,点P即为所求.
【变式6-3】(2022 长安区一模)如图,在△ABC中,AD⊥BC于点D,且CD=2BD,请用尺规作图法,在边AC上找一点P,使得△PAD的面积等于△BAD的面积(保留作图痕迹,不写作法).
【分析】作CD的垂直平分线交CD于E,交AC于P,连接DP、AE,由于CD=2BD,则DE=BD,所以△ADE的面积等于△ABD的面积,再利用PE∥AD得到△ADP的面积等于△ADE的面积,从而得到△PAD的面积等于△BAD的面积.
【解答】解:如图,点P为所作.
【题型7 线段垂直平分线的判定与性质的综合】
【例7】(2022秋 伊通县期末)如图,在△ABC中,AB的垂直平分线l1交AB于点M,交BC于点D,AC的垂直平分线l2交AC于点N,交BC于点E,l1与l2相交于点O,△ADE的周长为10.请你解答下列问题:
(1)求BC的长;
(2)试判断点O是否在边BC的垂直平分线上,并说明理由.
【分析】(1)根据线段垂直平分线的性质得到DB=DA,同理EA=EC,于是得到结论;
(2)连接AO,BO,CO,根据线段垂直平分线的性质即可得到结论.
【解答】解:(1)∵l1垂直平分AB,
∴DB=DA,
同理EA=EC,
∴BC=BD+DE+EC=DA+DE+EA=10;
(2)点O在边BC的垂直平分线上,
理由:连接AO,BO,CO,
∵l1与l2是AB,AC的垂直平分线,
∴AO=BO,CO=AO,
∴OB=OC,
∴点O在边BC的垂直平分线上.
【变式7-1】(2022 阜宁县校级月考)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=10,求△ADE的周长;
(2)设直线DM、EN交于点O.
①试判断点O是否在BC的垂直平分线上,并说明理由;
②若∠BAC=100°,求∠BOC的度数.
【分析】(1)根据垂直平分线性质得AD=BD,AE=EC.所以△ADE周长=BC;
(2)①如图,连接AO,BO,CO,根据线段垂直平分线的性质即可得到结论;
②根据四边形的内角和和等腰三角形的性质即可得到结论.
【解答】解:(1)∵AB、AC的垂直平分线分别交BC于D、E,
∴AD=BD,AE=CE,
C△ADE=AD+DE+AE=BD+DE+CE=BC=10;
(2)①如图,点O在BC的垂直平分线上,
理由:连接AO,BO,CO,
∵DM,EN分别是AB,AC的垂直平分线,
∴AO=BO,OA=OC,
∴OB=OC,
∴点O在BC的垂直平分线上;
②∵OM⊥AB,ON⊥AC,
∴∠AMO=∠ANO=90°,
∵∠BAC=100°,
∴∠MON=360°﹣90°﹣90°﹣100°=80°,
∴∠BOC=2∠MON=160°.
【变式7-2】(2022 宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于直线BC对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
【分析】(1)由点D与点A关于点E对称易证AC=CD,再根据角平分线,及垂直得到AC=AB,可得答案AB=CD;
(2)易证∠CAD=∠CDA=∠MPC,∠CMA=∠BMA=PMF,可得到∠MCD=∠F.
【解答】(1)证明:∵AF平分∠BAC,
∴∠CAD=∠DAB∠BAC,
∵D与A关于E对称,
∴E为AD中点,
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)
∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,
∴∠ACE=∠ABE,
∴AC=AB(注:证全等也可得到AC=AB),
∴AB=CD.
(2)解:∠F=∠MCD,理由如下:
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合一).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.
【变式7-3】(2022秋 信都区期末)如图1,△ABC中,AB=AC,点D在AB上,且AD=CD=BC.
(1)求∠A的大小;
(2)如图2,DE⊥AC于E,DF⊥BC于F,连接EF交CD于点H.
①求证:CD垂直平分EF;
②直接写出三条线段AE,DB,BF之间的数量关系.
【分析】(1)设∠A=x,由等腰三角形的性质得∠ACD=∠A=x,∠CBD=∠CDB=∠ACD+∠A=2x,∠ACB=∠CBD=2x,再由三角形内角和定理求出x=36°即可;
(2)①证△DEC≌△DFC(AAS),得DE=DF,∠EDH=∠FDH,再证△DEH≌△DFH(SAS),得EH=FH,∠DHE=∠DHF=90°,即可得出结论;
②在CA上截取CG=CB,连接DG,由全等三角形的性质得DE=DF,CE=CF,再证△DEG≌△DFB(SAS),得DG=DB,∠DGE=∠B,然后证AG=DG,即可得出结论.
【解答】(1)解:设∠A=x,
∵AD=CD,
∴∠ACD=∠A=x,
∵CD=BC,
∴∠CBD=∠CDB=∠ACD+∠A=2x;
∵AC=AB,
∴∠ACB=∠CBD=2x,
∴∠DCB=x,
∵x+2x+2x=180°,
∴x=36°,
∴∠A=36°;
(2)①证明:由(1)得:∠ACD=∠A=x,∠DCB=x,
∴∠ACD=∠DCB,
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°,
∵CD=CD,
∴△DEC≌△DFC(AAS),
∴DE=DF,∠EDH=∠FDH,
∵DH=DH,
∴△DEH≌△DFH(SAS),
∴EH=FH,∠DHE=∠DHF=90°,
∴CD垂直平分EF;
②解:三条线段AE,DB,BF之间的数量关系为:AE=DB+BF,理由如下:
在CA上截取CG=CB,连接DG,如图2所示:
由①得:△DEH≌△DFH,
∴DE=DF,CE=CF,
∵CG=CB,
∴CG﹣CE=CB﹣CF,
即GE=BF,
∵DE⊥AC,DF⊥BC,
∴∠DEG=∠DFB=90°,
∴△DEG≌△DFB(SAS),
∴DG=DB,∠DGE=∠B,
由(1)得:∠B=2x,∠A=x,
∴∠DGE=2∠A,
∵∠DGE=∠A+∠GDA,
∴∠A=∠GDA,
∴AG=DG,
∴AE=AG+GE=DG+BF=DB+BF.中小学教育资源及组卷应用平台
专题 线段垂直平分线的性质和判定【七大题型】
【题型1 线段垂直平分线的性质在求线段中的应用】
【例1】(2022秋 南召县期末)已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=  .
【变式1-1】(2022秋 潮安区期中)如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.
(1)判断△DBC的形状并证明你的结论.
(2)求证:BF=AC.
(3)试说明CEBF.
【变式1-2】(2022秋 庐阳区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.
【变式1-3】(2022秋 海珠区校级期中)△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.
(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;
(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.
【题型2 线段垂直平分线的性质在求角中的应用】
【例2】(2022秋 周村区校级期中)如图,线段AB,DE的垂直平分线交于点C,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD的度数为(  )
A.168° B.158° C.128° D.118°
【变式2-1】(2022秋 龙马潭区校级月考)如图,已知锐角△ABC中,AB、AC边的中垂线交于点O,∠A=α(0°<α<90°),
(1)求∠BOC;
(2)试判断∠ABO+∠ACB是否为定值?若是,求出定值,若不是,请说明理由.
【变式2-2】(2022秋 西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=(  )
A.50° B.80° C.90° D.100°
【变式2-3】(2022春 金牛区校级期中)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是:∠BOC=   .
【题型3 线段垂直平分线的性质在实际中的应用】
【例3】(2022秋 甘井子区期末)如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建在(  )
A.A处 B.B处 C.C处 D.D处
【变式3-1】(2022春 浑南区期末)有A、B、C三个不在同一直线上的居民点,现要选址建一个新冠疫苗接种点方便居民接种疫苗,要求接种点到三个居民点的距离相等,接种点应建在(  )
A.△ABC的三条中线的交点处
B.△ABC三边的垂直平分线的交点处
C.△ABC三条角平分线的交点处
D.△ABC三条高所在直线的交点处
【变式3-2】(2022春 武功县期末)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在△ABC(  )
A.三条中线的交点
B.三条高的交点
C.三条边的垂直平分线的交点
D.三个角的角平分线的交点
【变式3-3】如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应该修建在(  )
A.∠1的平分线和线段AB的交点处
B.∠1的平分线和线段AB的垂直平分线的交点处
C.∠2的平分线和线段AB的交点处
D.∠2的平分线和线段AB的垂直平分线的交点处
【题型4 线段垂直平分线的性质的综合运用】
【例4】(2022秋 广陵区校级月考)在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
(1)如图(1),连接AM、AN,求∠MAN的度数;
(2)如图(2),如果AB=AC,求证:BM=MN=NC.
【变式4-1】(2022秋 鄂托克旗期中)如图,在△ABC中,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.
(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;
(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.
【变式4-2】(2022春 市中区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
【变式4-3】(2022秋 红花岗区校级月考)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.
(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;
(2)若EF=4,BF:FD=5:3,S△BCF=10,求点D到AB的距离.
【知识点2 线段垂直平分线的判定】
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,(这样的点需要找两个)
【题型5 线段垂直平分线的判定】
【例5】(2022秋 伊川县期末)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度数;
(2)求证:直线AD是线段CE的垂直平分线.
【变式5-1】(2022秋 奈曼旗期中)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.
【变式5-2】(2022春 市北区期末)如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.
求证:(1)OC=OD,
(2)OE是线段CD的垂直平分线.
【变式5-3】(2022秋 平邑县期中)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.
(1)求证:AD平分∠BAC;
(2)连接EF,求证:AD垂直平分EF.
【题型6 线段垂直平分线的作法】
【例6】(2022秋 武城县期末)已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.
【变式6-1】(2022秋 祁阳县期末)如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为(  )
A.8 B.10 C.18 D.20
【变式6-2】(2022 榆林模拟)如图,在△ABC中,DE⊥BC于点D,交AB于点E.请用尺规作图法,在线段DC上求作一点P,使AP∥ED.(保留作图痕迹,不写作法)
【变式6-3】(2022 长安区一模)如图,在△ABC中,AD⊥BC于点D,且CD=2BD,请用尺规作图法,在边AC上找一点P,使得△PAD的面积等于△BAD的面积(保留作图痕迹,不写作法).
【题型7 线段垂直平分线的判定与性质的综合】
【例7】(2022秋 伊通县期末)如图,在△ABC中,AB的垂直平分线l1交AB于点M,交BC于点D,AC的垂直平分线l2交AC于点N,交BC于点E,l1与l2相交于点O,△ADE的周长为10.请你解答下列问题:
(1)求BC的长;
(2)试判断点O是否在边BC的垂直平分线上,并说明理由.
【变式7-1】(2022 阜宁县校级月考)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=10,求△ADE的周长;
(2)设直线DM、EN交于点O.
①试判断点O是否在BC的垂直平分线上,并说明理由;
②若∠BAC=100°,求∠BOC的度数.
【变式7-2】(2022 宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于直线BC对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
【变式7-3】(2022秋 信都区期末)如图1,△ABC中,AB=AC,点D在AB上,且AD=CD=BC.
(1)求∠A的大小;
(2)如图2,DE⊥AC于E,DF⊥BC于F,连接EF交CD于点H.
①求证:CD垂直平分EF;
②直接写出三条线段AE,DB,BF之间的数量关系.

展开更多......

收起↑

资源列表