初中数学阴影部分面积计算模型大全(图片版)

资源下载
  1. 二一教育资源

初中数学阴影部分面积计算模型大全(图片版)

资源简介

初中数学阴影部分面积计算模型大全
求阴影部分面积的常用方法有以下三种:
一、公式法 (所求面积的图形是规则图形)
二、和差法 (所求图形面积是不规则图形,可通过添加辅助线转化为规则图形的和或差)
(1)直接和差法
(2)构造和差法
三、等积变换法 (直接求面积无法计算或者较复杂,通过对图形的平移、选择、割补等,为利用公式法或和差法求解创造条件)
(1) 全等法
(2)对称法
(3) 平移法
(4) 旋转法
练习题
C
D

A
S阴影=S扇形COD
P
0
B
B
A
>

S阴影=S扇形ACB一S△4DC
C
B
C
B
A
D
A
E

E
>
S
阴影=S扇形CDE
B
B
C
D
F
C
F
C

S阴影=S正方形BCFE
A
E
B
A
E
B
D
C
C
G
H
G
H

S阴影=S
矩形ABHG
E
B
E
B
E
E
A
A
B
B


0
0
S阴影=S
扇形BOE
E
E
C


S阴影=S扇形ABE一S
扇形MBN
A
M
B
D
A
M
B
D
1.【推荐云南、山西、河南】如图,
在△ABC中,∠CAB=90°,∠CBA
=45°,以AB为直径作半圆O,AB
B
=8,则阴影部分面积为(
第1题图
A.24-4
B.16-4元
C.24-2π
D.16-2π
2.
【推荐云南、山西】
如图,AB
是⊙O的直径,AB=12,C、D为
A
B
⊙O上的点,且AC=CD=BD,
第2题图
则阴影部分的面积为
【答案】6元
【解析】如解图,连接OC、OD
.'AC=CD=BD,
B
..AC-CD-BD,
第2题解
∴.∠AOC=∠COD=∠BOD=60°,
∠CAD=∠DAB=∠CDA.∴.CD∥AB
∴.SA4ACD=SAOCD.
S阴影=S原形COD
nR260T×62
三6元.
360
360
3.
【推荐山西】
如图,正三角形
与正六边形的边长分别为2和1,
正六边形的顶点O是正三角形的中
心,则阴影面积的面积是
第3题图
【答案】
13
3
【解析】如解图,过点O分别作
AB、BC的垂线,垂足为点E、F,
O为等边三角形的中心,
B
EA
..OE=OF,SAOFC=SAOEA,
第3题解图
.S四达OABC=S边形OEBr=】XS
三角形)
3
:SEe=)×2×2×sin60°=3,S=
2
3

展开更多......

收起↑

资源预览