资源简介 3.1.3 函数的奇偶性(2)【学习目标】1. 会根据函数奇偶性求函数值或解析式.2.能利用函数的奇偶性与单调性分析、解决较简单的问题.【学习过程】题型突破题型一 用奇偶性求解析式【例1】 (1)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,求f(x)的解析式;(2)设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=,求函数f(x),g(x)的解析式.【多维探究】把本例(2)的条件“f(x)是偶函数,g(x)是奇函数”改为“f(x)是奇函数,g(x)是偶函数”,再求f(x),g(x)的解析式.【反思感悟】利用函数奇偶性求解析式的方法1“求谁设谁”,即在哪个区间上求解析式,x就应在哪个区间上设.2要利用已知区间的解析式进行代入.3利用fx的奇偶性写出-fx或f-x,从而解出fx.提醒:若函数fx的定义域内含0且为奇函数,则必有f0=0,但若为偶函数,未必有f0=0.题型二 结合函数单调性和奇偶性比较大小问题[探究问题]1.如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上的单调性如何?如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上的单调性如何?提示:如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上单调递增;如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上单调递增.2.你能否把上述问题所得出的结论用一句话概括出来?提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.3.若偶函数f(x)在(-∞,0)上单调递增,那么f(3)和f(-2)的大小关系如何?若f(a)>f(b),你能得到什么结论?提示:f(-2)>f(3),若f(a)>f(b),则|a|<|b|.【例2】 函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是( )A.f(1)C.f【反思感悟】比较大小的求解策略,看自变量是否在同一单调区间上.1在同一单调区间上,直接利用函数的单调性比较大小;2不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.【跟踪训练】2.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)题型三 结合函数单调性和奇偶性解不等式问题【例3】 已知定义在[-2,2]上的奇函数f(x)在区间[0,2]上是减函数,若f(1-m)【反思感悟】解有关奇函数fx的不等式fa+fb<0,先将fa+fb<0变形为fa<-fb=f-b,再利用fx的单调性去掉“f”,化为关于a,b的不等式.另外,要特别注意函数的定义域,由于偶函数在关于原点对称的两个区间上的单调性相反,所以我们要利用偶函数的性质fx=f|x|=f-|x|将fgx中的gx全部化到同一个单调区间内,再利用单调性去掉符号f,使不等式得解.【跟踪训练】3.函数f(x)是定义在实数集上的偶函数,且在[0,+∞)上是增函数,f(3)A.a>1 B.a<-2C.a>1或a<-2 D.-1达标检测1.思考辨析(1)奇函数f(x)=,当x>0时的解析式与x<0时的解析式相同,所以一般的奇函数在(0,+∞)上的解析式与(-∞,0)上的解析式也相同.( )(2)对于偶函数f(x),恒有f(x)=f(|x|).( )(3)若存在x0使f(1-x0)=f(1+x0),则f(x)关于直线x=1对称.( )(4) 若奇函数f(x)在(0,+∞)上有最小值a,则f(x)在(-∞,0)上有最大值-a.( )2.已知偶函数在(-∞,0)上单调递增,则( )A.f(1)>f(2) B.f(1)C.f(1)=f(2) D.以上都有可能3.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)A.abC.|a|<|b| D.0≤ab≥04.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2,求f(x),g(x)的表达式.本课小结1.具有奇偶性的函数的单调性的特点(1)奇函数在[a,b]和[-b,-a]上具有相同的单调性.(2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.2.利用函数奇偶性求函数解析式的关键是利用奇偶函数的关系式f(-x)=-f(x)或f(-x)=f(x),但要注意求给定哪个区间的解析式就设这个区间上的变量为x,然后把x转化为-x(另一个已知区间上的解析式中的变量),通过适当推导,求得所求区间上的解析式.3.偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.参考答案题型突破【例1】解析:(1)设x<0,则-x>0,∴f(-x)=-(-x)+1=x+1,又∵函数f(x)是定义域为R的奇函数,∴f(-x)=-f(x)=x+1,∴当x<0时,f(x)=-x-1.又x=0时,f(0)=0,所以f(x)=(2)∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x).由f(x)+g(x)=,①用-x代替x得f(-x)+g(-x)=,∴f(x)-g(x)=,②(①+②)÷2,得f(x)=;(①-②)÷2,得g(x)=.【多维探究】解析:∵f(x)是奇函数,g(x)是偶函数,∴f(-x)=-f(x),g(-x)=g(x),又f(x)+g(x)=,①用-x代替上式中的x,得f(-x)+g(-x)=,即f(x)-g(x)=.②联立①②得f(x)=,g(x)=.【例2】答案:B解析:∵函数f(x+2)是偶函数,∴函数f(x)的图象关于直线x=2对称,∴f=f,f=f,又f(x)在[0,2]上单调递增,∴f【跟踪训练】2.答案:A解析:由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(-∞,0)时,f(x)是减函数,故其图象的几何特征是自变量的绝对值越小,则其函数值越小,∵|-2|<|-3|<π,∴f(π)>f(-3)>f(-2),故选A.【例3】解析:因为f(x)在区间[-2,2]上为奇函数,且在区间[0,2]上是减函数,所以f(x)在[-2,2]上为减函数.又f(1-m)故实数m的取值范围是-1≤m<.【跟踪训练】3.答案:C因为函数f(x)在实数集上是偶函数,且f(3)1或a<-2.故选C.达标检测1.答案:(1)× (2)√ (3)× (4)√2.答案:A 解析:∵f(x)是偶函数,且在(-∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减,∴f(1)>f(2),故选A.3.答案:C∵f(x)是R上的偶函数,且在[0,+∞)上是增函数,∴由f(a)4.解析: f(-x)+g(-x)=x2-x-2,由f(x)是偶函数,g(x)是奇函数得,f(x)-g(x)=x2-x-2,又f(x)+g(x)=x2+x-2,两式联立得f(x)=x2-2,g(x)=x. 展开更多...... 收起↑ 资源预览