3_3函数的应用(一)导学案(含答案)

资源下载
  1. 二一教育资源

3_3函数的应用(一)导学案(含答案)

资源简介

3.3 函数的应用(一)
【学习目标】
1.了解函数模型(如一次函数、二次函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
2.能够利用给定的函数模型或建立确定的函数模型解决实际问题.
【学习过程】
一、课前预习
预习课本,思考并完成以下问题
(1)一、二次函数的表达形式分别是什么?
(2) 解决实际问题的基本过程是什么?
二、课前小测
1.一个矩形的周长是40,则矩形的长y关于宽x的函数解析式为(  )
A.y=20-x,0C.y=40-x,02.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是(  )
A.一次函数模型 B.二次函数模型
C.分段函数模型 D.无法确定
3.某商店进货单价为45元,若按50元一个销售,能卖出50个;若销售单价每涨1元,其销售量就减少2个,为了获得最大利润,此商品的最佳售价应为每个________元.
三、新知探究
常见的几类函数模型
函数模型 函数解析式
一次函数模型 f(x)=ax+b(a,b为常数,a≠0)
二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0)
分段函数模型 f(x)=
四、题型突破
题型一 一次函数模型的应用
【例1】 某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒(  )
A.2 000套   B.3 000套
C.4 000套 D.5 000套
【反思感悟】
1.一次函数模型的实际应用
一次函数模型应用时,本着“问什么,设什么,列什么”这一原则.
2.一次函数的最值求解
一次函数求最值,常转化为求解不等式ax+b≥0(或≤0),解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.
【跟踪训练】
1.如图所示,这是某通讯公司规定的打某国际长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的函数关系图象.根据图象填空:
①通话2分钟,需要付电话费________元;
②通话5分钟,需要付电话费________元;
③如果t≥3,则电话费y(元)与通话时间t(分钟)之间的函数关系式为________.
题型二 二次函数模型的应用
【例2】 某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;
(3)当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?
[思路点拨] 本题中平均每天的销售量y(箱)与销售单价x(元/箱)是一个一次函数关系,虽然x∈[50,55],x∈N,但仍可把问题看成一次函数模型的应用问题;平均每天的销售利润w(元)与销售单价x(元/箱)是一个二次函数关系,可看成是一个二次函数模型的应用题.
【反思感悟】
二次函数模型的解析式为gx=ax2+bx+ca≠0.在函数建模中,它占有重要的地位.在根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最值问题. 二次函数求最值最好结合二次函数的图象来解答.
【跟踪训练】
2.A,B两城相距100 km,在两地之间距A城x km处D地建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得少于10 km,已知每个城市的供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.
(1)把A,B两城月供电总费用y(万元)表示成x(km)的函数,并求定义域;
(2)核电站建在距A城多远,才能使供电总费用最小.
题型三 分段函数模型的应用
【例3】 某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-t2(万元).
(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;
(2)当这种产品的年产量为多少时,当年所得利润最大?
【反思感悟】
1.分段函数的“段”一定要分得合理,不重不漏.
2.分段函数的定义域为对应每一段自变量取值范围的并集.
3.分段函数的值域求法:逐段求函数值的范围,最后比较再下结论.
【跟踪训练】
3.已知A、B两地相距150千米,某人开汽车以60千米/时的速度从A地到B地,在B地停留1小时后再以50千米/时的速度返回A地.
(1)把汽车离开A地的距离x(千米)表示为时间t(小时)的函数;
(2)求汽车行驶5小时与A地的距离.
五、达标检测
1.思考辨析
甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,判断下列说法的对错.
(1)甲比乙先出发.(  )
(2)乙比甲跑的路程多.(  )
(3)甲、乙两人的速度相同.(  )
(4)甲先到达终点.(  )
2.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是(  )
A     B   C   D
3.某人从A地出发,开汽车以80千米/小时的速度经2小时到达B地,在B地停留2小时,则汽车离开A地的距离y(单位:千米)是时间t(单位:小时)的函数,该函数的解析式是________.
4. 某游乐场每天的盈利额y元与售出的门票张数x之间的函数关系如图所示,试由图象解决下列问题:
(1)求y与x的函数解析式;
(2)要使该游乐场每天的盈利额超过1 000元,每天至少卖出多少张门票?
六、本课小结
1.解有关函数的应用题,首先应考虑选择哪一种函数作为模型,然后建立其解析式.求解析式时,一般利用待定系数法,要充分挖掘题目的隐含条件,充分利用函数图形的直观性.
2.数学建模的过程图示如下:
参考答案
课前小测
1.答案:A
2.答案:C
解析:由s与t的图象,可知t分4段,则函数模型为分段函数模型.
3.答案:60 
设涨价x元,销售的利润为y元,
则y=(50+x-45)(50-2x)=-2x2+40x+250
=-2(x-10)2+450,
所以当x=10,即销售价为60元时,y取得最大值.
题型突破
【例1】答案:D
解析:因利润z=12x-(6x+30 000),所以z=6x-30 000,由z≥0解得x≥5 000,故至少日生产文具盒5 000套.
【跟踪训练】
1. 答案:①3.6 ②6 ③y=1.2t(t≥3) 
解析:①由图象可知,当t≤3时,电话费都是3.6元.
②由图象可知,当t=5时,y=6,需付电话费6元.
③易知当t≥3时,图象过点(3,3.6),(5,6),待定系数求得y=1.2t(t≥3).]
【例2】解析:
(1)根据题意,得y=90-3(x-50),
化简,得y=-3x+240(50≤x≤55,x∈N).
(2)因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润.
所以w=(x-40)(-3x+240)=-3x2+360x-9 600(50≤x≤55,x∈N).
(3)因为w=-3x2+360x-9 600=-3(x-60)2+1 200,
所以当x<60时,w随x的增大而增大.
又50≤x≤55,x∈N,所以当x=55时,w有最大值,最大值为1 125.
所以当每箱苹果的售价为55元时,可以获得最大利润,且最大利润为1 125元.
【跟踪训练】
2.解析:(1)由题意设甲城的月供电费用为y1,则y1=λ×20x2.
设乙城的月供电费用为y2,则y2=λ×10×(100-x)2,
∴甲、乙两城月供电总费用y=λ×20x2+λ×10×(100-x)2.
∵λ=0.25,
∴y=5x2+(100-x)2(10≤x≤90).
(2)由y=5x2+(100-x)2=x2-500x+25 000
=2+,
则当x=时,y最小.
故当核电站建在距A城 km时,才能使供电总费用最小.
【例3】解析:
(1)当05时,产品只能售出500件.
所以f(x)=
即f(x)=
(2)当0f(x)max=10.781 25(万元).
当x>5时,f(x)<12-0.25×5=10.75(万元).
故当年产量为475件时,当年所得利润最大.
【跟踪训练】
3.解析:
(1)汽车以60千米/时的速度从A地到B地需2.5小时,这时x=60t;当2.5所求函数的解析式为x=
(2)当t=5时,x=-50×5+325=75,
即汽车行驶5小时离A地75千米.
达标检测
1.答案:(1)× (2)× (3)× (4)√
2.答案:B 
图反映随着水深h的增加,注水量V增长速度越来越慢,这反映水瓶中水上升的液面越来越小.
3.答案: y=
4. 解析:
(1)由图象知,可设y=kx+b(k≠0),x∈[0,200]时,过点(0,-1 000)和(200,1 000),解得k=10,b=-1 000,从而y=10x-1 000;x∈(200,300]时,过点(200,500)和(300,2 000),解得k=15,b=-2 500,
从而y=15x-2 500,
所以y=
(2)每天的盈利额超过1 000元,则x∈(200,300],由15x-2 500>1 000得,x>,故每天至少需要卖出234张门票.

展开更多......

收起↑

资源预览