函数的解析式、定义域和值域的求解方法讲义-2023届高三数学一轮复习(含答案)

资源下载
  1. 二一教育资源

函数的解析式、定义域和值域的求解方法讲义-2023届高三数学一轮复习(含答案)

资源简介

函数的定义域与值域的常用方法
一. 教学内容:
求函数的定义域与值域的常用方法
求函数的解析式,求函数的定义域,求函数的值域,求函数的最值.
二. 学习目标
1、进一步理解函数的定义域与值域的概念;
2、会应用代换、方程思想求简单的函数解析式;
3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值;
4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用;
5、会求实际问题中的函数解析式、定义域、值域和最值问题;
6、会用集合、区间或不等式表示函数的定义域和值域。
三. 知识要点
(一)求函数的解析式
【典型例题】
考点一:求函数解析式
1、直接法:由题给条件可以直接寻找或构造变量之间的联系。
例1. 已知函数y=f(x)满足xy<0,4x2-9y2=36,求该函数解析式。
解:由4x2-9y2=36可解得:

2、待定系数法:由题给条件可以明确函数的类型,从而可以设出该类型的函数的一般式,然后再求出各个参变量的值。
例2:已知是二次函数,若且试求的表达式。
解析:设 (a0)
由得c=0 由 得
整理得

(三)配凑法
已知复合函数的表达式,要求的解析式时,若表达式右边易配成的运算形式,则可用配凑法,使用配凑法时,要注意定义域的变化。
例3:已知求的解析式。
分析:可配凑成可用配凑法
解:由

则即
当然,上例也可直接使用换元法
令则


4、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
5、实际问题中的函数解析式:这是高考的一个热点题型,一般难度不大,所涉及知识点也不多,关键是合理设置变量,建立等量关系。
例4. 动点P从边长为1的正方形ABCD的顶点B出发,顺次经过C、D再到A停止。设x表示P行驶的路程,y表示PA的长,求y关于x的函数。
解:由题意知:当x∈[0,1]时:y=x;
当x∈(1,2)时:;
当x∈(2,3)时:;
故综上所述,有
(六)赋值法
赋值法是依据题条件的结构特点,由特殊到一般寻找普遍规律的方法。
其方法:将适当变量取特殊值,使问题具体化、简单化,依据结构特点,从而找出一般规律,求出解析式。
例5:已知求。
解析:令



小结:①所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定。②通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。
总之,求函数解析式的常用方法有:配凑法、换元法、待定系数法、解方程组法等。如果已知函数解析式的类型,可用待定系数法;已知复合函数解析式时,可用换元法,这时要注意“元”的取值范围;当已知的表达式比较简单时,可用配凑法;若已知抽象的函数表达式,根据题目的条件特征,可用赋值法或解方程组消元的方法求解析式.
(二)求函数定义域
1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;
2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;
3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;
4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;
5、分段函数的定义域是各个区间的并集;
6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;
7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;
考点二:求函数定义域
1、由函数解析式求函数定义域:由于解析式中不同的位置决定了变量不同的范围,所以解题时要认真分析变量所在的位置;最后往往是通过解不等式组确定自变量的取值集合。
例6. 求的定义域。
解:由题意知:,从而解得:x>-2且x≠±4.故所求定义域为:
{x|x>-2且x≠±4}。
2、求分段函数的定义域:对各个区间求并集。
例7. 已知函数由下表给出,求其定义域
X 1 2 3 4 5 6
Y 22 3 14 35 -6 17
解:{1,2,3,4,5,6}。
3、求与复合函数有关的定义域:由外函数f(u)的定义域可以确定内函数g(x)的范围,从而解得x∈I1,又由g(x)定义域可以解得x∈I2.则I1∩I2即为该复合函数的定义域。也可先求出复合函数的表达式后再行求解。
解:
又由于x2-4x+3>0 **
联立*、**两式可解得:
例9. 若函数f(2x)的定义域是[-1,1],求f(log2x)的定义域。
解:由f(2x)的定义域是[-1,1]可知:2-1≤2x≤2,所以f(x)的定义域为[2-1,2],故log2x∈[2-1,2],解得,故定义域为。
4、求解含参数的函数的定义域:一般地,须对参数进行分类讨论,所求定义域随参数取值的不同而不同。
例10. 求函数的定义域。
解:若,则x∈R;
若,则;
若,则;
故所求函数的定义域:
当时为R,当时为,当时为。
说明:此处求定义域是对参变量a进行分类讨论,最后叙述结论时不可将分类讨论的结果写成并集的形式,必须根据a的不同取值范围分别论述。
考点三:求函数的值域与最值
求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。
1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;
2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;
3、分段函数的值域是各个区间上值域的并集;
4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;
5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;
6、求函数值域的方法十分丰富,应注意总结;
设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(xo)=M,则称当x=xo时
取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N;
2、求函数的最值问题可以化归为求函数的值域问题;
3、闭区间的连续函数必有最值。
一、观察法:
对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数 的解析式,求得函数的值域.
求函数的值域。
解:,
练习:求下列函数的值域


配方法;
配方法是二次函数求值域最常用的方法
例2 求函数
解:
由图像可知,函数的
值域为
练习题:
分离常数法
求以下函数的值域
(1)
解:(1)
(2)
练习:
换元法求函数值域
例4

则原式可以化简为:
由f(1)=1,
练习:
五、判别式法求函数值域
例5、求以下函数的值域
解:
化简得:


y
综上函数的值域为
练习:
(2)
(3)

展开更多......

收起↑

资源预览