资源简介 1.4 有理数的乘除法1.4.1 有理数的乘法5分钟训练(预习类训练,可用于课前)1.口答:(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6).思路解析:依照有理数法则计算.答案:(1)-54 (2)54 (3)-54 (4)-6 (5)6 (6)-6 (7)0 (8)02.口答:(1)1×(-5);(2)(-1)×(-5); (3)+(-5);(4)-(-5);(5)1×a;(6)(-1)×a.思路解析:先定符号,然后计算其绝对值?答案:(1)-5 (2)5 (3)-5 (4)5 (5)a (6)-a3.填空:(1)有理数乘法法则两数相乘,同号得______,异号得______,并把绝对值______,任何数同零相乘都得0;(2)n个不等于零的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为_______;当负因数的个数为偶数个时,积为_______.这是多个非零因数相乘,积的符号规律;(3)n个数相乘,有一个因数为0,积就为_______.思路解析:有理数乘法法则的正确使用,关键在于确定好正负号.答案:(1)正 负 相乘 (2)负 正 (3)010分钟训练(强化类训练,可用于课中)1.如下图所示,a,b,c在数轴上的位置,用“>”“<”“=”填空.(1)a-c_______0; (2)b_______c;(3)ab______0; (4)abc______0.思路解析:这道题首先要确定a、b、c这三个数的大小关系及它们本身的正负号.由于“数轴上的数,右边的总是比左边的大”,所以可知a>0>b>c.知道了这个关系,判断就简单了.答案:(1)> (2)> (3)< (4)>2.判断题:(1)同号两数相乘,符号不变; ( )(2)异号两数相乘,取绝对值较大的因数的符号; ( )(3)两数相乘,如果积为正数,则这两个因数都为正数; ( )(4)两数相乘,如果积为负数,则这两个因数异号; ( )(5)两数相乘,如果积为0,则这两个数全为0; ( )(6)两个数相乘,积比每一个因数都大. ( )思路解析:注意因数中有负数、正数、零之分.答案:(1)× (2)× (3)× (4)√ (5)× (6)×3.当a、b是下列各数值时,填写空格中计算的积与和:a 10 -6 - -7 -2 0 -b -9 -4 -6 0 -2 -28aba+b答案:a 10 -6 - -7 -2 0 -b -9 -4 -6 0 -2 -28ab -90 24 -9 -1 0 0 -a+b 1 -10 -4.5 - -7 4 -28 -4.计算(1)(-9)×(+);(2)(-2)×(-7)×(+5)×(-);(3)(+3)×(3-7)××.思路解析:先确定结果符号,然后计算.解:(1)原式=-9×=-6;(2)原式=-2×7×5×=-10;(3)原式=××(×-×)=3-7=-4.5.用简便方法计算:(1)(-1 000)×(-+-0.1);(2)(-3.59)×(-)-2.41×(-)+6×(-);(3)19×(-14).思路解析:灵活运用运算律简化计算.解:(1)原式=-1 000×(0.3+0.2-0.5-0.1)=100;(2)原式=- ×(-3.59-2.41+6)=-(-6+6)=0;(3)原式=(20-)×(-14)=-20×14+×14=-219.快乐时光首相和司机丘吉尔有一次应邀到广播电台发表重要演说.他叫来一部出租车,对司机说:“送我到BBC广播电台.”“抱歉,我不能送你去.”司机说,“因为我要回家收听丘吉尔的演说.”丘吉尔听了很高兴,马上掏出一英镑给了司机.司机也很高兴,叫道:“上来吧!去他的丘吉尔!”30分钟训练(巩固类训练,可用于课后)1.如果abc=0,那么一定有( )A.a=b=0 B.a=0,b≠0,c≠0C.a、b、c至少有一个为0 D.a、b、c最多有一个为0思路解析:三个数乘积为0,说明因数中有零.但不能确定零的个数,所以只能选C.答案:C2.填空题:(1)五个数相乘,积为负,则其中正因数有________;(2)四个各不相等的整数a、b、c、d,它们的积abcd=25,那么a+b+c+d=_______.思路解析:(1)五个数相乘积为负,说明五个数中,负因数的个数是1个,3个或5个.(2)因为25=1×5×5,又a、b、c、d是四个各不相等的整数,所以这四个数只能是±1和±5.答案:(1)4个,2个或0个.(2)03.若ab>0,且a+b<0,则a_____0,b______0.思路解析:先由这两个条件判定a,b可能的符号,再看同时满足两个条件的结果是哪种情况?由ab>0知a与b是同号的(两数相乘,同号为正),则a与b可能同时为正,也可能同时为负数.而a+b<0.若a与b同时为正数,和不会是负数,只能是“同时为负”这种情况了.答案: < <4.计算:(1)(-12)×(+4); (2)(-9)×(-8);(3)(-1)×7; (4)1×(-1);(5)0×(-2).思路解析:根据有理数乘法则来解.答案:(1)-48;(2)72;(3)-7 ;(4)-1 ;(5)0.5.用简便方法计算:(1)(-3)×(-5)×(-)×(-)×(-)×(-);(2)(-7.5)×(+25)×(-0.04);(3)(--)×(-24).思路解析:本题中(1)(2)都是几个不等于0的有理数相乘,要先确定符号,还要运用乘法的结合律,使计算简便.运用了乘法的分配律.解:(1)原式=3××5×××= ;(2)原式=7.5×25×0.04=7.5;(3)原式=- ×24+ ×24+ ×24=-16+20+15=19.6.计算:(1)(+9)×(-10)×(-)×0×(+9)×(-5.75);(2)(-0.12)××(-200)×(-);(3)(+-)×(-36).思路解析:本题属于多个有理数相乘,第(1)题是几个有理数相乘,但有一个因数为0,则它们的积为0.第(2)(3)题是几个不等于0的有理数相乘,应先决定积的符号,它由负因数的个数决定.第(3)小题可以运用乘法分配律较简便,也可先算括号内的,但比较麻烦!解:(1)原式=0;(2)原式=-0.12×100××2×=-;(3)原式=- ×36-×36+×36=-12-4+15=-1.7.计算:201×(-199).思路解析:仿照上题中的(2)小题,201可以写成(200+1),199可以写成(200-1),将结果的符号先确定,为负则题目化为-(200+1)(200-1),展开后计算量很小.答案:原式=-(200+1)×(200-1)=-[(200+1)×200-(200+1)×1]=-(200×200+200-200-1)=-(40 000-1)=-39 999.8.判断下列方程的解是正数还是负数或0:(1)4x=-16; (2)-3x=18;(3)-9x=-36; (4)-5x=0.思路解析:根据乘法法则来判断.答案:(1)负数;(2)负数;(3)正数;(4)0.9.我们来观察两个算式:①63×67=6×(6+1)×100+3×7=4 200+21=4 221;②692×698=69×(69+1)×100+2×8=483 000+16=483 016.我们来观察,这两个算式中两个因数个位上数字之和是多少 其余各位上的数字有什么明显的特征 并计算734×736.思路解析:个位上数字之和为10,其余各位上的数字相同.如734×736=73×(73+1)×100+4×6=540 200+24=540 224.答案:个位上数字之和为10,其余各位上的数字相同,734×736=540 224.PAGE 展开更多...... 收起↑ 资源预览