资源简介 5.1.3 数据的直观表示学习目标1.理解并掌握统计图表的画法及应用.(重点、易混点)2.结合实例,能用样本估计总体的取值规律.(重点、难点)学习过程一、考点精讲1.画频率分布直方图的步骤(1)求极差:极差是一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5~12组,为了方便起见,一般取等长组距,并且组距应力求“取整”.(3)将数据分组.(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:横轴表示分组,纵轴表示.小长方形的面积=组距×=频率.各小长方形的面积和等于1.2.其它统计图表统计图表 主要应用扇形图 直观描述各类数据占总数的比例条形图和直方图 直观描述不同类别或分组数据的频数和频率折线图 描述数据随时间的变化趋势二、典例剖析题型一 频率分布直方图的画法【例1】 一个农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.65.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.05.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.75.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.06.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表,绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm之间的麦穗所占的百分比.[方法技巧]绘制频率分布直方图应注意的问题(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“”所占的比例来定高.如我们预先设定以“”为1个单位长度,代表“0.1”,则若一个组的为0.2,则该小矩形的高就是“”(占两个单位长度),如此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个左右时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.[活学活用] 1.如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).区间界限 [122,126) [126,130) [130,134) [134,138) [138,142)人数 5 8 10 22 33区间界限 [142,146) [146,150) [150,154) [154,158]人数 20 11 6 5(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.题型二 频率分布直方图的应用【例2】 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?[方法技巧]频率分布直方图的性质(1)因为小矩形的面积=组距×=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3) 样本容量=频数/相应的频率.[活学活用] 2.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60 C.120 D.140题型三 其它统计图表与频率分布直方图的综合应用[探究问题]1.统计图表对于数据分析能够起到什么作用?[提示] (1)从数据中获取有用的信息;(2)直观、准确地理解相关的结果.2.条形图、扇形图、折线图、频率分布直方图这四种统计图中,哪些可以从图中看出原始数据?[提示] 折线图.【例3】 如图是根据某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图,试根据折线统计图反映的信息,绘制该市3月1日到10日最低气温(单位:℃)的扇形统计图.[活学活用] 3、若本例中条件不变,绘制该市3月1日到3月10日最低气温(单位:℃)的条形统计图.[方法技巧]折线统计图的读图方法(1)读折线统计图时,首先要看清楚直角坐标系中横、纵坐标表示的意义;其次要明确图中的数量及其单位.(2)在折线统计图中,从折线的上升、下降可分析统计数量的增减变化情况,从陡峭程度上,可分析数据间相对增长、下降的幅度.三、达标检测1.判断正误(1)频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.( )(2)频率分布直方图中小矩形的面积表示该组的个体数.( )(3)扇形统计图表示的是比例,条形统计图不表示比例.( )2.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率分布直方图如图所示,其中支出(单位:元)在[50,60]内的学生有30人,则n的值为( )A.100 B.1 000C.90 D.9003.甲、乙两个城市2018年4月中旬每天的最高气温统计图如图所示,则这9天里,气温比较稳定的是 城市.(填“甲”或“乙”)四、本课小结1.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.2.条形统计图及折线统计图特别适用于数据量很大的情况,但却损失了数据的部分信息.扇形统计图适合表示总体的各个部分所占比例的问题,但不适用于总体分成部分较多的问题.参考答案典例剖析【例1】 解析: (1)计算极差:7.4-4.0=3.4.(2)决定组距与组数:若取组距为0.3,因为≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12.(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55.(4)列频率分布表:分组 频数 频率[3.95,4.25) 1 0.01[4.25,4.55) 1 0.01[4.55,4.85) 2 0.02[4.85,5.15) 5 0.05[5.15,5.45) 11 0.11[5.45,5.75) 15 0.15[5.75,6.05) 28 0.28[6.05,6.35) 13 0.13[6.35,6.65) 11 0.11[6.65,6.95) 10 0.10[6.95,7.25) 2 0.02[7.25,7.55] 1 0.01合计 100 1.00(5)绘制频率分布直方图如图.从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm之间的麦穗约占41%.[活学活用] 1.解析: (1)样本频率分布表如下:分组 频数 频率[122,126) 5 0.04[126,130) 8 0.07[130,134) 10 0.08[134,138) 22 0.18[138,142) 33 0.28[142,146) 20 0.17[146,150) 11 0.09[150,154) 6 0.05[154,158] 5 0.04合计 120 1.00(2)其频率分布直方图如下:(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.【例2】 解析: (1)频率分布直方图是以面积的形式反映了数据落在各小组内的频率大小的,因此第二小组的频率为=0.08.又因为第二小组的频率=,所以样本容量===150.(2)由频率分布直方图可估计该校高一年级学生的达标率为×100%=88%.[活学活用] 2.答案:D 由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.【例3】 解析: 该城市3月1日至10日的最低气温(单位:℃)情况如下表:日期 1 2 3 4 5 6 7 8 9 10最低气温(℃) -3 -2 0 -1 1 2 0 -1 2 2其中最低气温为-3 ℃的有1天,占10%,最低气温为-2 ℃的有1天,占10%,最低气温为-1℃的有2天,占20%,最低气温为0℃的有2天,占20%,最低气温为1℃的有1天,占10%,最低气温为2℃的有3天,占30%,扇形统计图如图所示.[活学活用] 3、解析: 该城市3月1日到3月10日的最低气温(单位:℃)情况如下表:日期 1 2 3 4 5 6 7 8 9 10最低气 温(℃) -3 -2 0 -1 1 2 0 -1 2 2其中最低气温为-3 ℃的有1天,最低气温为-2 ℃的有1天,最低气温为-1 ℃的有2天,最低气温为0 ℃的有2天,最低气温为1 ℃的有1天,最低气温为2 ℃的有3天.条形统计图如图所示.达标检测1.解析: (1)正确.(2)错误.频率分布直方图中小矩形的面积表示该组的频率.(3)错误.条形图也可以表示.[答案] (1)√ (2)× (3)×2.答案:A 由题意可知,前三组的频率之和为(0.01+0.024+0.036)×10=0.7,∴支出在[50,60]内的频率为1-0.7=0.3,∴n==100.3.答案:甲 这9天里,乙城市的最高气温约为35 ℃,最低气温约为20 ℃;甲城市的最高气温约为25 ℃,最低气温约为21 ℃.故甲城市气温较稳定. 展开更多...... 收起↑ 资源预览