资源简介 中小学教育资源及组卷应用平台七年级数学上册绝对值解答题专题培优练习1.分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:(1)当a=5时,求的值.(2)当a=﹣2时,求的值.(3)若有理数a不等于零,求的值.(4)若有理数a、b均不等于零,试求的值.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a= .(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为 ;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是 .(4)当a= 时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是 .3.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x= ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是 ,最小距离是 .(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|= .4.在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.5.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a 1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为 ;②|x﹣a|+|x﹣b|+|x+1|的最小值为 ;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为 .6.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为 ;②若该两点之间的距离为2,那么x值为 .(2)|x+1|+|x﹣2|的最小值为 ,此时x的取值是 ;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值 和最小值 .7.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.8.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求++的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则++=++=1+1+1=3;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则++=++=1+(﹣1)+(﹣1)=﹣1.综上所述,++值为3或﹣1.【探究拓展】请根据上面的解题思路解答下面的问题:(1)已知a,b是不为0的有理数,当|ab|=﹣ab时,则+的值是 ;(2)已知a,b,c是有理数,当abc<0时,求++的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求++的值.9.有理数a,b,c,ab<0,ac>0,且|c|>|b|>|a|,数轴上a,b,c对应的点分别为A,B,C.(1)若a=1,请你在数轴上标出点A,B,C的大致位置;(2)若|a|=﹣a,则a 0,b 0,c 0;(填“>”、“<“或“=”)(3)小明判断|a﹣b|﹣|b+c|+|c﹣a|的值一定是正数,小明的判断是否正确?请说明理由.10.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上是否存在点M,使点M到A,B,C,三点的距离之和等于12?若存在,请求出所有点M对应的数,若不存在,请说明理由.11.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x= ;(2)当x= 时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是 ;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动 秒时,点P到点E,点F的距离相等.12.有理数a、b在数轴上的对应点位置如图所示(1)用“<”连接0、﹣a、﹣b、﹣1(2)化简:|a|﹣2|a+b﹣1|﹣|b﹣a﹣1|(3)若c (a2+1)<0,且c+b>0,求的值.13.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 .②数轴上表示x和﹣2的两点之间的距离表示为 .数轴上表示x和5的两点之间的距离表示为 .③若x表示一个有理数,则|x﹣1|+|x+3|的最小值= .④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是 .⑤若x表示一个有理数,当x为 ,式子|x+2|+|x﹣3|+|x﹣5|有最小值为 .14.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+1=3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.15.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x= ;(2)当x= 时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是 ;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动 秒时,点P到点E,点F的距离相等.16.如图,数轴上有三个点A、B、C,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动 个单位;(2)若移动A、B、C三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是 个单位;(3)若在原点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此规律继续跳下去,那么跳第100次时,应跳 步,落脚点表示的数是 ;(4)若有两只小青蛙A、B,它们在数轴上的点表示的数分别为整数x、y,且|x﹣2|+|y+3|=2,求两只小青蛙A、B之间的距离.17.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.18.阅读下列材料并解决相关问题.化简代数式|x+5|+|2x﹣3|的关键在于去掉两个绝对值符号,我们知道,只去掉一个绝对值符号很容易,如|x+5|,只要考虑x+5的正负,可以分为x<﹣5与x≥﹣5两种情况来讨论,这里的x=﹣5是使x+5=0的x值,我们称它为x+5的一个零点.同理,对于2x﹣3,也有一个零点x=.为了同时去掉两个绝对值符号我们可以将x的取值范围分成三段,即x<﹣5,﹣5≤x<,x≥进行讨论,这种令各个绝对值内的代数式为0,找出零点,确定讨论范围的方法称为“零点分段法”.(1)填空:|x+5|+|2x﹣3|=(2)代数式||x﹣1|﹣2|+|x+1|的零点值有哪些?(3)化简||x﹣1|﹣2|+|x+1|.19.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是 ;数轴上表示数x和3的两点之间的距离表示为 ;数轴上表示数 和 的两点之间的距离表示为|x+2|;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为: .②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x= .20.大家知道|5|=|5﹣0|,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)点A、B在数轴上分别表示实数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x的值.(3)直接写出代数式|x+1|+|x﹣4|的最小值及相应的x的取值范围.21.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示﹣2和﹣5的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;②数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是 .④当x= 时,|x+1|+|x﹣2|=5.22.(1)【问题发现】数学小组遇到这样一个问题:若a,b均不为零,求x=的值.小明说:“考虑到要去掉绝对值符号,必须对字母a,b的正负作出讨论,又注意到a,b在问题中的平等性,可从一般角度考虑两个字母的取值情况.”解:①当两个字母a,b中有2个正,0个负时,x=+=1+1=2;②当两个字母a,b中有1个正,1个负时,无论谁正谁负,x都等于0;③当两个字母a,b中有0个正,2个负时,x=+=﹣1﹣1=﹣2;综上,当a,b均不为零,求x的值为﹣2,0,2.(2)【拓展探究】若a,b,c均不为零,求x=+﹣的值.(3)【问题解决】若a,b,c均不为零,且a+b+c=0,直接写出代数式++的值.参考答案1.分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:(1)当a=5时,求的值.(2)当a=﹣2时,求的值.(3)若有理数a不等于零,求的值.(4)若有理数a、b均不等于零,试求的值.解:(1)当a=5时,=1;(2)当a=﹣2时,=﹣1;(3)若有理数a不等于零,当a>0时,=1,当a<0时,=﹣1;(4)若有理数a、b均不等于零,当a,b是同正数,=2,当a,b是同负数,=﹣2,当a,b是异号,=0.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a= ﹣4或2 .(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为 6 ;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是 12 .(4)当a= 1 时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是 7 .解:(1)|1﹣4|=3,|﹣3﹣2|=5,|a﹣(﹣1)|=3,所以,a+1=3或a+1=﹣3,解得a=﹣4或a=2;(2)∵表示数a的点位于﹣4与2之间,∴a+4>0,a﹣2<0,∴|a+4|+|a﹣2|=(a+4)+[﹣(a﹣2)]=a+4﹣a+2=6;(3)使得|x+2|+|x﹣5|=7的整数点有﹣2,﹣1,0,1,2,3,4,5,﹣2﹣1+0+1+2+3+4+5=12.故这些点表示的数的和是12;(4)a=1有最小值,最小值=|1+3|+|1﹣1|+|1﹣4|=4+0+3=7.故答案为:3,5,﹣4或2;6;12;1;7.3.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x= 2或﹣4 ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是 8 ,最小距离是 2 .(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|= 6 .解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.4.在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.解:(1)点B表示的数为﹣5+6=1,∵﹣1<1<2,∴三个点所表示的数最小的数是﹣1;(2)点D表示的数为(﹣1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,则点E表示的数是﹣5﹣(﹣1+5)=﹣9.5.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a < 1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为 b﹣a ;②|x﹣a|+|x﹣b|+|x+1|的最小值为 b+1 ;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为 b﹣c .解:(1)根据数轴上的点得:c<a<b;(2)由题意得:b﹣a<1;(3)|c﹣b|﹣|c﹣a+1|+|a﹣1|=b﹣c﹣(a﹣c﹣1)+a﹣1=b﹣c﹣a+c+1+a﹣1=b;(4)①当x在a和b之间时,|x﹣a|+|x﹣b|有最小值,∴|x﹣a|+|x﹣b|的最小值为:x﹣a+b﹣x=b﹣a;②当x=a时,|x﹣a|+|x﹣b|+|x+1|=0+b﹣a+a﹣(﹣1)=b+1为最小值;③当x=a时,|x﹣a|+|x﹣b|+|x﹣c|=0+b﹣a+a﹣c=b﹣c为最小值.故答案为:<;b﹣a;b+1;b﹣c.6.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为 |x+1| ;②若该两点之间的距离为2,那么x值为 ﹣3或1 .(2)|x+1|+|x﹣2|的最小值为 3 ,此时x的取值是 ﹣1≤x≤2 ;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值 6 和最小值 ﹣7 .解:(1)①A、B之间的距离可用含x的式子表示为|x+1|;②依题意有|x+1|=2,x+1=﹣2或x+1=2,解得x=﹣3或x=1.故x值为﹣3或1.(2)|x+1|+|x﹣2|的最小值为3,此时x的取值是﹣1≤x≤2;(3)∵(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,∴﹣1≤x≤2,﹣2≤y≤3,∴x﹣2y的最大值为2﹣2×(﹣2)=6,最小值为﹣1﹣2×3=﹣7.故x﹣2y的最大值6,最小值﹣7.故答案为:|x+1|;﹣3或1;3,﹣1≤x≤2;6,﹣7.7.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.解:(1)∵ab>0,a+b<0,∴a<0,b<0∴=﹣1﹣1=﹣2;(2)当a、b、c同正时,=1+1+1=3;当a、b、c两正一负时,=1+1﹣1=1;当a、b、c一正两负时,=﹣1﹣1+1=﹣1;当a、b、c同负时,=﹣1﹣1﹣1=﹣3;(3)∵a+b+c=0,∴b+c=﹣a,a+c=﹣b,a+b=﹣c∴=+﹣=﹣﹣+又∵abc<0,∴当c<0,a>0,b>0时,原式=﹣﹣+=﹣1﹣1﹣1=﹣3;当c>0,a>0,b<0时,原式=﹣﹣+=﹣1+1+1=1;当c>0,a<0,b>0时,原式=﹣﹣+=1﹣1+1=1.8.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求++的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则++=++=1+1+1=3;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则++=++=1+(﹣1)+(﹣1)=﹣1.综上所述,++值为3或﹣1.【探究拓展】请根据上面的解题思路解答下面的问题:(1)已知a,b是不为0的有理数,当|ab|=﹣ab时,则+的值是 0 ;(2)已知a,b,c是有理数,当abc<0时,求++的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求++的值.解:(1)a,b是不为0的有理数,当|ab|=﹣ab时,a>0,b<0,或a<0,b>0,当a>0,b<0时,;当 a<0,b>0时,.故答案为:0.(2)abc<0,∴a、b、c都是负数或其中一个为负数,另两个为正数,①当a、b、c都是负数,即a<0,b<0,c<0时,则:|==﹣1﹣1﹣1=﹣3;②a、b、c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则==﹣1+1+1=1;(3)∵a,b,c为三个不为0的有理数,且a+b+c=0得,a+b=﹣c,c+a=﹣b,b+c=﹣a.a,b,c中只有一个负数,另两个为正数时,设a<0,b>0,c>0,=1﹣1﹣1=﹣1.9.有理数a,b,c,ab<0,ac>0,且|c|>|b|>|a|,数轴上a,b,c对应的点分别为A,B,C.(1)若a=1,请你在数轴上标出点A,B,C的大致位置;(2)若|a|=﹣a,则a < 0,b > 0,c < 0;(填“>”、“<“或“=”)(3)小明判断|a﹣b|﹣|b+c|+|c﹣a|的值一定是正数,小明的判断是否正确?请说明理由.解:(1)a=1时,b<0,c>0,而|c|>|b|>|a|,所以c>1,﹣c<b<﹣1,如图,(2)∵|a|=﹣a,∴a<0,∴b>0,c<0,故答案为<,>,<;(3)小明的判断正确.理由如下:当a>0时,则b<0,c>0,而|c|>|b|>|a|,则|a﹣b|﹣|b+c|+|c﹣a|=a﹣b﹣(b+c)+c﹣a=﹣2b>0;当a<0时,则b>0,c<0,而|c|>|b|>|a|,则|a﹣b|﹣|b+c|+|c﹣a|=﹣(a﹣b)+(b+c)+a﹣c=2b>0;综上所述,|a﹣b|﹣|b+c|+|c﹣a|的值一定是正数.10.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上是否存在点M,使点M到A,B,C,三点的距离之和等于12?若存在,请求出所有点M对应的数,若不存在,请说明理由.解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.11.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x= ﹣1 ;(2)当x= ﹣4或2 时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是 ﹣3≤x≤1 ;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动 或2 秒时,点P到点E,点F的距离相等.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.12.有理数a、b在数轴上的对应点位置如图所示(1)用“<”连接0、﹣a、﹣b、﹣1(2)化简:|a|﹣2|a+b﹣1|﹣|b﹣a﹣1|(3)若c (a2+1)<0,且c+b>0,求的值.解:(1)由数轴可得:﹣1<﹣b<0<﹣a;(2)原式=﹣a+2(a+b﹣1)﹣(b﹣a﹣1)=;(3)∵c (a2+1)<0,且c+b>0,∴c<0,1>b>0,∴|c|<b,原式=+﹣=1﹣1+1=1.13.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 .②数轴上表示x和﹣2的两点之间的距离表示为 |x+2| .数轴上表示x和5的两点之间的距离表示为 |5﹣x| .③若x表示一个有理数,则|x﹣1|+|x+3|的最小值= 4 .④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是 ﹣3或﹣2或﹣1或0或1或2 .⑤若x表示一个有理数,当x为 3 ,式子|x+2|+|x﹣3|+|x﹣5|有最小值为 7 .解:①数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4,故答案为:3,4;②数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|,数轴上表示x和5的两点之间的距离表示为|5﹣x|,故答案为:|x+2|,|5﹣x|;③当x<﹣3时,|x﹣1|+|x+3|=1﹣x﹣x﹣3=﹣2x﹣2,当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,当x>1时,|x﹣1|+|x+3|=x﹣1+x+3=2x+2,在数轴上|x﹣1|+|x+3|的几何意义是:表示有理数x的点到﹣3及到1的距离之和,所以当﹣3≤x≤1时,它的最小值为4,故答案为:4;④当x<﹣3时,|x+3|+|x﹣2|=﹣x﹣3+2﹣x=﹣2x﹣1=5,解得:x=﹣3,此时不符合x<﹣3,舍去;当﹣3≤x≤2时,|x+3|+|x﹣2|=x+3+2﹣x=5,此时x=﹣3或x=﹣2或0或1或2;当x>2时,|x+3|+|x﹣2|=x+3+x﹣2=2x+1=5,解得:x=2,此时不符合x>2,舍去;当x=0时,|x+3|+|x﹣2|=5;当x=1时,|x+3|+|x﹣2|=5;当x=﹣1时,|x+3|+|x﹣2|=5;故答案为:﹣3或﹣2或﹣1或0或1或2;⑤∵设y=|x+2|+|x﹣3|+|x﹣5|,i、当x≥5时,y=x+2+x﹣3+x﹣5=3x﹣6,∴当x=5时,y最小为:3x﹣6=3×5﹣6=9;ii、当3≤x<5时,y=x+2+x﹣3+5﹣x=x+4,∴当x=3时,y最小为7;iii、当﹣2≤x<3时,y=x+2+3﹣x+5﹣x=10﹣x,∴此时y最小接近7;iiii、当x<﹣2时,y=﹣x﹣2+3﹣x+5﹣x=6﹣3x,∴此时y最小接近12;∴y的最小值为7.故答案为:3,7.14.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+1=3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则:++=++=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则++=1+1﹣1=1.(2)∵|a|=3,|b|=1,且a<b,∴a=﹣3,b=1或﹣1,则a+b=﹣2或﹣4.15.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x= ﹣1 ;(2)当x= ﹣4或2 时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是 ﹣3≤x≤1 ;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动 或2 秒时,点P到点E,点F的距离相等.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.16.如图,数轴上有三个点A、B、C,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动 3或7 个单位;(2)若移动A、B、C三点中的两个点,使三个点表示的数相同,移动方法有 3 种,其中移动所走的距离和最小的是 7 个单位;(3)若在原点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此规律继续跳下去,那么跳第100次时,应跳 199 步,落脚点表示的数是 100 ;(4)若有两只小青蛙A、B,它们在数轴上的点表示的数分别为整数x、y,且|x﹣2|+|y+3|=2,求两只小青蛙A、B之间的距离.解:(1)由图象可知需将点C向左移动3或7个单位,故答案为3或7.(2)有3种方法:①移动B、C,把点B向左移动2个单位长度,把C向左移动7个单位长度,移动距离之和为:2+7=9;②移动A、C,把点A向右移动2个单位长度,把C向左移动5个单位长度,移动距离之和为:2+5=7;③移动B、A,把点A向右移动7个单位长度,把B向左右移动5个单位长度,移动距离之和为:7+5=12.所以移动所走的距离和最小的是7个单位,故答案为:3,7;(3)∵第1次跳1步,第2次跳3步,第3次跳5步,第4次跳7步,…∴第n次跳(2n﹣1)步,当n=100时,2×100﹣1=200﹣1=199,此时,所表示的数是:﹣1+3﹣5+7﹣…﹣197+199,=(﹣1+3)+(﹣5+7)+…+(﹣197+199),=2×=100,故答案为199,100;(4)根据题意,|x﹣2|与|x+3|都是整数.分三种情况进行分类讨论①|x﹣2|=0,|y+3|=2,所以|x﹣y|=3或7②|x﹣2|=1,|y+3|=1.所以|x﹣y|=3或5或7③|x﹣2|=2,|y+3|=0.所以|x﹣y|=3或7故两青蛙之间的距离是3或5或7.17.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.18.阅读下列材料并解决相关问题.化简代数式|x+5|+|2x﹣3|的关键在于去掉两个绝对值符号,我们知道,只去掉一个绝对值符号很容易,如|x+5|,只要考虑x+5的正负,可以分为x<﹣5与x≥﹣5两种情况来讨论,这里的x=﹣5是使x+5=0的x值,我们称它为x+5的一个零点.同理,对于2x﹣3,也有一个零点x=.为了同时去掉两个绝对值符号我们可以将x的取值范围分成三段,即x<﹣5,﹣5≤x<,x≥进行讨论,这种令各个绝对值内的代数式为0,找出零点,确定讨论范围的方法称为“零点分段法”.(1)填空:|x+5|+|2x﹣3|=(2)代数式||x﹣1|﹣2|+|x+1|的零点值有哪些?(3)化简||x﹣1|﹣2|+|x+1|.解:(1)|x+5|+|2x﹣3|=.(2)代数式||x﹣1|﹣2|+|x+1|的零点值有:x﹣1=0,x=1,x+1=0,x=﹣1,|x﹣1|﹣2=0,x=3或﹣1,综上所述,代数式||x﹣1|﹣2|+|x+1|的零点值有:x=±1或3.(3)||x﹣1|﹣2|+|x+1|=.19.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是 3 ;数轴上表示数x和3的两点之间的距离表示为 |x﹣3| ;数轴上表示数 x 和 ﹣2 的两点之间的距离表示为|x+2|;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为: 5 .②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x= ﹣3或4 .解:(1)数轴上表示﹣2和﹣5的两点之间的距离=|﹣2﹣(﹣5)|=3;数轴上表示数x和3的两点之间的距离=|x﹣3|;数轴上表示数x和﹣2的两点之间的距离表示为|x+2|;(2)①当﹣2≤x≤3时,|x+2|+|x﹣3|=x+2+3﹣x=5;②当x>3时,x﹣3+x+2=7,解得:x=4,当x<﹣2时,3﹣x﹣x﹣2=7.解得x=﹣3.∴x=﹣3或x=4.故答案为:(1)3;|x﹣3|;x;﹣2;(2)5;﹣3或4.20.大家知道|5|=|5﹣0|,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是 3 ;数轴上表示﹣2和﹣5的两点之间的距离是 3 ;(2)点A、B在数轴上分别表示实数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x的值.(3)直接写出代数式|x+1|+|x﹣4|的最小值及相应的x的取值范围.解:根据分析,可得(1)数轴上表示2和5的两点之间的距离是:|5﹣2|=3;数轴上表示﹣2和﹣5的两点之间的距离是:|(﹣2)﹣(﹣5)|=|﹣2+5|=|3|=3.(2)①|AB|=|x﹣(﹣1)|=|x+1|.②如果|AB|=2,则|x+1|=2,x+1=2或x+1=﹣2,解得x=1或x=﹣3.(3)∵代数式|x+1|+|x﹣4|表示数轴上有理数x所对应的点到4和﹣1所对应的两点距离之和,∴当﹣1≤x≤4时,代数式|x+1|+|x﹣4|的最小值是:|4﹣(﹣1)|=5,即代数式|x+1|+|x﹣4|的最小值是5,x的取值范围是﹣1≤x≤4.故答案为:5,﹣1≤x≤4.21.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是 3 ,数轴上表示﹣2和﹣5的两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 ;②数轴上表示x和﹣1的两点A和B之间的距离是 |x+1| ,如果|AB|=2,那么x为 1或﹣3 ;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是 ﹣1≤x≤2 .④当x= 3或﹣2 时,|x+1|+|x﹣2|=5.解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.22.(1)【问题发现】数学小组遇到这样一个问题:若a,b均不为零,求x=的值.小明说:“考虑到要去掉绝对值符号,必须对字母a,b的正负作出讨论,又注意到a,b在问题中的平等性,可从一般角度考虑两个字母的取值情况.”解:①当两个字母a,b中有2个正,0个负时,x=+=1+1=2;②当两个字母a,b中有1个正,1个负时,无论谁正谁负,x都等于0;③当两个字母a,b中有0个正,2个负时,x=+=﹣1﹣1=﹣2;综上,当a,b均不为零,求x的值为﹣2,0,2.(2)【拓展探究】若a,b,c均不为零,求x=+﹣的值.(3)【问题解决】若a,b,c均不为零,且a+b+c=0,直接写出代数式++的值.解:(2)①当a,b,c都为正数时:x=+﹣=1+1﹣1=1.②当a,b为正,c为负时:x=+﹣=1+1+1=3.当a,c为正,b为负时:x=+﹣=1﹣1﹣1=﹣1.当b,c为正,a为负时:x=+﹣=﹣1+1﹣1=﹣1.③当a,b为负,c为正时:x=+﹣=﹣1﹣1﹣1=﹣3.当a,c为负,b为正时:x=+﹣=﹣1+1+1=1.当b,c为负,a为正时:x=+﹣=1﹣1+1=1.④当a,b,c都为负数时:x=+﹣=﹣1﹣1+1=﹣1.综上所述x=+﹣的值为1或3或﹣3或﹣1.(3)∵a,b,c均不为零,且a+b+c=0,∴a,b,c为两正一负或两负一正.∴①当a,b,c为两正一负时:++=﹣﹣﹣=﹣1﹣1+1=﹣1.②当a,b,c为两负一正时:++=﹣﹣﹣=1+1﹣1=1. 展开更多...... 收起↑ 资源预览