资源简介 三角形知识归纳姓名: 班级:知识点01 三角形及其分类三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.三角形按边分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).三角形按角分类:锐角三角形、直角三角形、钝角三角形。知识点02 三角形的三边关系三角形三边关系定理:三角形两边之和大于第三边,且三角形的两边差小于第三边.知识点03 三角形的高线、中线和角平分线1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.(垂心、求角度、面积)尺规画图:2)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.(重心、平分等面积)尺规画图:3)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.(内心、点到两边的距离相等)尺规画图:4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.知识点04 三角形的稳定性当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.这一特性主要应用在实际生活中.知识点05 三角形的内角和定理1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.2)三角形内角和定理:三角形内角和是180°.3)三角形内角和定理的证明:证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.知识点06 三角形的外角性质1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有6个外角,其中有公共顶点的两个相等,因此共有3对.2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.知识点07 直角三角形的性质1)有一个角为90°的三角形,叫做直角三角形.2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.知识点07 多边形的相关概念多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.各个角都相等,各条边都相等的多边形叫做正多边形;注意:各个角都相等、各条边都相等是正多边形的必备条件,二者缺一不可.如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角都相等的四边形才是正方形.知识点09 多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;从边形的一个顶点出发,可以画(n-3)条对角线,边形一共有条对角线.知识点10 多边形的内角和与外角和定理多边形的内角和公式:边形的内角和为;多边形的外角和定理:多边形的外角和等于360°.内角和公式的应用:(1)已知多边形的边数,求其内角和;(2)已知多边形内角和,求其边数.边数=内角和÷180°+2外角和定理的应用:(1)已知外角度数,求正多边形边数;(2)已知正多边形边数,求外角度数.正多形边数=360°÷一个外角度数设内角为x度,则外角为(180-x)度。知识点11 镶嵌平面镶嵌的定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(或平面镶嵌).镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形.注意:1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 展开更多...... 收起↑ 资源预览