资源简介
高一上3-3 课后练习题
一、单选题
1.函数的单调递减区间为( )
A. B. C. D.
2.已知函数是幂函数,对任意的且,满足,若,则的值( )
A.恒大于0 B.恒小于0
C.等于0 D.无法判断
3.“”是“幂函数在上是减函数”的一个( )条件
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要
4.已知幂函数的图象关于y轴对称,且在上单调递减,则满足的a的取值范围为( )
A. B.
C. D.
5.已知幂函数的图象过点,则( )
A. B. C. D.
6.已知幂函数满足,若,,,则,,的大小关系是( )
A. B.
C. D.
7.已知幂函数的图象经过点,则等于( )
A. B. C.2 D.3
8.已知幂函数的图象过点,则( )
A. B. C. D.
9.已知函数是幂函数,且在上递增,则实数( )
A.-1 B.-1或3 C.3 D.2
10.已知幂函数的图象过点,则函数的图象是( )
A. B.
C. D.
11.设f(x)为奇函数,且当x≥0时,f(x)=,则当x<0时,f(x)=
A. B.
C. D.
12.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是
A. B.
C. D.
二、填空题
13.已知y=f(x)是奇函数,当x≥0时, ,则f(-8)的值是____.
14.已知幂函数的图象过点,则此函数的解析式为______.
15.幂函数的图象经过点,则=____.
16.幂函数在上单调递减,则的值为______.
17.已知幂函数的图象关于原点对称,则满足成立的实数a的取值范围为___________.
三、解答题
18.已知幂函数的定义域为全体实数R.
(1)求的解析式;
(2)若在上恒成立,求实数k的取值范围.
19.已知幂函数是偶函数,且在上是减函数,求函数的解析式.
20.定义在实数集上的函数的图象是一条连绵不断的曲线,,,且的最大值为1,最小值为0.
(1)求与的值;
(2)求的解析式.
21.已知幂函数()是偶函数,且在上单调递增.
(1)求函数的解析式;
(2)若,求的取值范围;
(3)若实数,(,)满足,求的最小值.
22.若幂函数在其定义域上是增函数.
(1)求的解析式;
(2)若,求的取值范围.
23.已知幂函数,且在区间内函数图象是上升的.
(1)求实数k的值;
(2)若存在实数a,b使得函数f(x)在区间[a,b]上的值域为[a,b],求实数a,b的值.
参考答案:
1.A
【分析】,由结合函数的递减区间可得结果.
【详解】,
由得,又,
所以函数的单调递减区间为.
故选:.
2.B
【解析】根据函数为幂函数以及函数在的单调性,可得,然后可得函数的奇偶性,结合函数的单调性以及奇偶性,可得结果.
【详解】由题可知:函数是幂函数
则或
又对任意的且,满足
所以函数为的增函数,故
所以,又,
所以为单调递增的奇函数
由,则,所以
则
故选:B
【点睛】本题考查幂函数的概念以及函数性质的应用,熟悉函数单调递增的几种表示,比如,属中档题.
3.A
【分析】由幂函数在上是减函数,可得,由充分、必要条件的定义分析即得解
【详解】由题意,当时,在上是减函数,故充分性成立;
若幂函数在上是减函数,
则,解得或
故必要性不成立
因此“”是“幂函数在上是减函数”的一个充分不必要条件
故选:A
4.D
【分析】由条件知,,可得m=1.再利用函数的单调性,分类讨论可解不等式.
【详解】幂函数在上单调递减,故,解得.又,故m=1或2.
当m=1时,的图象关于y轴对称,满足题意;
当m=2时,的图象不关于y轴对称,舍去,故m=1.
不等式化为,
函数在和上单调递减,
故或或,解得或.
故应选:D.
5.D
【分析】先利用待定系数法求出幂函数的解析式,再求的值
【详解】解:设,则,得,
所以,
所以,
故选:D
6.C
【分析】由可求得,得出单调递增,根据单调性即可得出大小.
【详解】由可得,∴,
∴,即.由此可知函数在上单调递增.
而由换底公式可得,,,
∵,∴,于是,
又∵,∴,故,,的大小关系是.
故选:C.
【点睛】关键点睛:本题考查利用函数单调性判断大小,解题的关键是判断出函数的单调性以及自变量的大小.
7.A
【分析】由于函数为幂函数,所以,再将点代入解析式中可求出的值,从而可求出
【详解】解:因为为幂函数,所以,所以,
因为幂函数的图像过点,
所以,解得,
所以,
故选:A
8.D
【分析】先用待定系数法求出幂函数解析式,然后直接求出即可.
【详解】解:设幂函数,代入点,
得,解得,
所以,
则,
故选:D.
【点睛】本题考查利用待定系数法求幂函数解析式,是基础题.
9.C
【分析】根据幂函数的定义和性质,列出相应的方程,即可求得答案.
【详解】由题意知:,即,解得或,
∴当时,,则在上单调递减,不合题意;
当时,,则在上单调递增,符合题意,
∴,
故选:C
10.C
【分析】设出函数的解析式,根据幂函数的图象过点,构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象.
【详解】设幂函数的解析式为,
∵幂函数的图象过点,
∴,
解得
∴,其定义域为,且是增函数,
当时,其图象在直线的上方.对照选项可知C满足题意.
故选:C.
11.D
【分析】先把x<0,转化为-x>0,代入可得,结合奇偶性可得.
【详解】是奇函数, 时,.
当时,,,得.故选D.
【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.
12.B
【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决.
【详解】时,,,,即右移1个单位,图像变为原来的2倍.
如图所示:当时,,令,整理得:,(舍),时,成立,即,,故选B.
【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.
13.
【分析】先求,再根据奇函数求
【详解】,因为为奇函数,所以
故答案为:
【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.
14.##
【分析】设出幂函数,代入点即可求解.
【详解】由题意,设,代入点得,解得,则.
故答案为:.
15.2
【分析】根据幂函数过点,求出解析式,再有解析式求值即可.
【详解】设,
则,
所以,
故,
所以.
故答案为:
16.2
【分析】利用幂函数定义求出m值,再借助幂函数单调性即可判断作答.
【详解】解:因为函数是幂函数,
则有,解得或,
当时,函数在上单调递增,不符合题意,
当时,函数在上单调递减,符合题意.
所以的值为
故答案为:
17.
【分析】利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.
【详解】因函数是幂函数,则,解得或,
当时,是偶函数,其图象关于y轴对称,与已知的图象关于原点对称矛盾,
当时,是奇函数,其图象关于原点对称,于是得,
不等式化为:,即,解得:,
所以实数a的取值范围为.
故答案为:
18.(1)
(2)
【分析】(1)根据幂函数的定义可得,结合幂函数的定义域可确定m的值,即得函数解析式;
(2)将在上恒成立转化为函数在上的最小值大于0,结合二次函数的性质可得不等式,解得答案.
(1)
∵是幂函数,∴,∴或2.
当时,,此时不满足的定义域为全体实数R,
∴m=2,∴.
(2)
即,要使此不等式在上恒成立,
令,只需使函数在上的最小值大于0.
∵图象的对称轴为,故在上单调递减,
∴,
由,得,
∴实数k的取值范围是.
19.
【分析】根据幂函数的单调性,可知,又,则,再根据函数是偶函数,将分别代入验证可得答案.
【详解】因为幂函数在区间上单调递减,则,得,
又∵,∴或1.
因为函数是偶函数,将分别代入,
当时,,函数为是偶函数,满足条件.
当时,,函数为是偶函数,满足条件.
的解析式为.
20.(1),
(2)
【分析】(1)利用赋值法,令,得到;令,得到;
(2)先由得到,根据的最大值为1,最小值为0及
图象连续,写出的解析式.
(1)
令,则,得
∴
∴
令,则,
同理;
(2)
由
得,即
这说明,至少与1,,其中之一相等
∵的最大值为1,最小值为0
∴在区间和上,一定有
只能在处取得,因此
又∵函数的图象是一条连绵不断的曲线
∴的解析式为
21.(1);(2);(3)2.
【分析】(1)根据幂函数的定义求得,由单调性和偶函数求得得解析式;
(2)由偶函数定义变形不等式,再由单调性去掉函数符号“”,然后求解;
(3)由基本不等式求得最小值.
【详解】解析:(1).,
,
()
即或
在上单调递增,为偶函数
即
(2)
,,,
∴
(3)由题可知,
,
当且仅当,即,时等号成立.
所以的最小值是2.
22.(1);(2)或.
【解析】(1)根据幂函数的概念,以及幂函数单调性,求出,即可得出解析式;
(2)根据函数单调性,将不等式化为,求解,即可得出结果.
【详解】(1)因为是幂函数,所以,解得或,
又是增函数,即,,则;
(2)因为为增函数,所以由可得,解得或
的取值范围是或.
23.(1)2;(2)a=0,b=1.
【分析】(1)根据幂函数的定义先求出的可能值,再根据幂函数的单调性判断正确的值;
(2)根据函数的单调性即可判断的取值情况,列出式子即可求解.
【详解】(1)为幂函数,
∴,解得或,
又在区间内的函数图象是上升的,
,
∴k=2;
(2)∵存在实数a,b使得函数在区间上的值域为,且,
∴,即,
,∴a=0,b=1.
展开更多......
收起↑