2023年新高考数学二轮复习真题源讲义之专题1 培优点3 导数中函数的构造问题(学生版+教师版)(含解析)

资源下载
  1. 二一教育资源

2023年新高考数学二轮复习真题源讲义之专题1 培优点3 导数中函数的构造问题(学生版+教师版)(含解析)

资源简介

本资料分享自高中数学同步资源大全QQ群483122854 专注收集同步资源期待你的加入与分享
培优点3 导数中函数的构造问题
【要点提炼】
导数问题中已知某个含f′(x)的不等式,往往可以转化为函数的单调性,我们可以根据不等式的形式构造适当的函数求解问题.
【典例】1 (1)f(x)是定义在R上的偶函数,当x<0时,f(x)+xf′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为________________.
(2)已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(-1)=0,当x>0时,2f(x)>xf′(x),则使得f(x)>0成立的x的取值范围是________________.
【典例】2 (1)定义在R上的函数f(x)满足f′(x)>f(x)恒成立,若x1A.f(x2)>f(x1)
B.f(x2)< f(x1)
C.f(x2)=f(x1)
D.f(x2)与f(x1)的大小关系不确定
(2)已知定义在上的函数f(x),f′(x)是它的导函数,且恒有f(x)A.f >f B.f(1)<2f sin 1
C.f >f D.f 【方法总结】
(1)构造函数xf(x),:当条件中含“+”时优先考虑xf(x);当条件中含“-”时优先考虑.
(2)构造函数:条件中含“xf′(x)-nf(x)”的形式;
构造函数xf(nx):条件中含“nxf′(nx)+f(nx)”的形式.
(3)构造函数:条件中含“f′(x)-f(x)”的形式.
(4)构造函数:条件中含“f′(x)sin x-f(x)cos x”的形式.
1.(2020·广东韶关调研)已知f(x)为R上的可导函数,且 x∈R,均有f(x)>f′(x),则以下判断正确的是(  )
A.f(2 021)>e2 021f(0)
B.f(2 021)C.f(2 021)=e2 021f(0)
D.f(2 021)与e2 021f(0)的大小关系无法确定
2.已知f(x)是定义在R上的减函数,其导函数f′(x)满足+x<1,则下列结论正确的是(  )
A.对于任意x∈R,f(x)<0
B.对于任意x∈R,f(x)>0
C.当且仅当x∈(-∞,1)时,f(x)<0
D.当且仅当x∈(1,+∞)时,f(x)>0
3.设f(x)是定义在R上的偶函数,且f(1)=0,当x<0时,有xf′(x)-f(x)>0恒成立,则不等式f(x)>0的解集为________________________.
4.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2 020)2f(x+2 020)-4f(-2)>0的解集为________.
联系QQ309000116加入百度网盘群2500G一线老师必备资料一键转存,自动更新,一劳永逸本资料分享自高中数学同步资源大全QQ群483122854 专注收集同步资源期待你的加入与分享
培优点3 导数中函数的构造问题
【要点提炼】
导数问题中已知某个含f′(x)的不等式,往往可以转化为函数的单调性,我们可以根据不等式的形式构造适当的函数求解问题.
【典例】1 (1)f(x)是定义在R上的偶函数,当x<0时,f(x)+xf′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为________________.
【答案】 (-∞,-4)∪(0,4)
【解析】 构造F(x)=xf(x),则F′(x)=f(x)+xf′(x),当x<0时,f(x)+xf′(x)<0,可以推出当x<0时,F′(x)<0,F(x)在(-∞,0)上单调递减,∵f(x)为偶函数,∴F(x)=xf(x)为奇函数,∴F(x)在(0,+∞)上也单调递减.根据f(-4)=0可得F(-4)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知xf(x)>0的解集为(-∞,-4)∪(0,4).
(2)已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(-1)=0,当x>0时,2f(x)>xf′(x),则使得f(x)>0成立的x的取值范围是________________.
【答案】 (-1,0)∪(0,1)
【解析】 构造F(x)=,则F′(x)=,当x>0时,xf′(x)-2f(x)<0,可以推出当x>0时,F′(x)<0,F(x)在(0,+∞)上单调递减,∵f(x)为偶函数,∴F(x)=为偶函数,
∴F(x)在(-∞,0)上单调递增.根据f(-1)=0可得F(-1)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知f(x)>0的解集为(-1,0)∪(0,1).
【典例】2 (1)定义在R上的函数f(x)满足f′(x)>f(x)恒成立,若x1A.f(x2)>f(x1)
B.f(x2)< f(x1)
C.f(x2)=f(x1)
D.f(x2)与f(x1)的大小关系不确定
【答案】 A
【解析】 设g(x)=,
则g′(x)==.
由题意得g′(x)>0,所以g(x)在R上单调递增,
当x1所以f(x2)> f(x1).
(2)已知定义在上的函数f(x),f′(x)是它的导函数,且恒有f(x)A.f >f B.f(1)<2f sin 1
C.f >f D.f 【答案】 D
【解析】 构造函数g(x)=,
则g′(x)=,
由已知可得,当x∈时,g′(x)>0,g(x)为增函数,
∴g∴f 【方法总结】
(1)构造函数xf(x),:当条件中含“+”时优先考虑xf(x);当条件中含“-”时优先考虑.
(2)构造函数:条件中含“xf′(x)-nf(x)”的形式;
构造函数xf(nx):条件中含“nxf′(nx)+f(nx)”的形式.
(3)构造函数:条件中含“f′(x)-f(x)”的形式.
(4)构造函数:条件中含“f′(x)sin x-f(x)cos x”的形式.
1.(2020·广东韶关调研)已知f(x)为R上的可导函数,且 x∈R,均有f(x)>f′(x),则以下判断正确的是(  )
A.f(2 021)>e2 021f(0)
B.f(2 021)C.f(2 021)=e2 021f(0)
D.f(2 021)与e2 021f(0)的大小关系无法确定
【答案】 B
【解析】 令函数g(x)=,则g′(x)=.
∵f(x)>f′(x),∴g′(x)<0,
即函数g(x)在R上单调递减,
∴g(2 021)∴f(2 021)2.已知f(x)是定义在R上的减函数,其导函数f′(x)满足+x<1,则下列结论正确的是(  )
A.对于任意x∈R,f(x)<0
B.对于任意x∈R,f(x)>0
C.当且仅当x∈(-∞,1)时,f(x)<0
D.当且仅当x∈(1,+∞)时,f(x)>0
【答案】 B
【解析】 因为函数f(x)是定义在R上的减函数,所以f′(x)<0.因为+x<1,所以f(x)+xf′(x)>f′(x),
所以f(x)+(x-1)f′(x)>0,构造函数g(x)=(x-1)·f(x),则g′(x)=f(x)+(x-1)f′(x)>0,所以函数g(x)在R上单调递增,又g(1)=(1-1)f(1)=0,所以当x<1时,g(x)<0,所以f(x)>0;当x>1时,g(x)>0,所以f(x)>0.因为f(x)是定义在R上的减函数,所以f(1)>0.综上,对于任意x∈R,f(x)>0,故选B.
3.设f(x)是定义在R上的偶函数,且f(1)=0,当x<0时,有xf′(x)-f(x)>0恒成立,则不等式f(x)>0的解集为________________________.
【答案】 (-∞,-1)∪(1,+∞)
【解析】 构造F(x)=,则F′(x)=,当x<0时,xf′(x)-f(x)>0,可以推出当x<0时,F′(x)>0,F(x)在(-∞,0)上单调递增,∵f(x)为偶函数,∴F(x)为奇函数,∴F(x)在(0,+∞)上也单调递增,根据f(1)=0可得F(1)=0.根据函数图象(图略)可知f(x)>0的解集为
(-∞,-1)∪(1,+∞).
4.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2 020)2f(x+2 020)-4f(-2)>0的解集为________.
【答案】 (-∞,-2 022)
【解析】 由2f(x)+xf′(x)>x2,x<0,得2xf(x)+x2·f′(x)2 020),F(-2)=4f(-2),所以F(2 020+x)-F(-2)>0,
即F(2 020+x)>F(-2).
又F(x)在(-∞,0)上是减函数,所以2 020+x<-2,即x<-2 022.
联系QQ309000116加入百度网盘群2500G一线老师必备资料一键转存,自动更新,一劳永逸

展开更多......

收起↑

资源列表