资源简介 2018-2022年高考数学(文科)真题分类汇编--专题6数列一、单选题1.(2022·全国(文))已知等比数列的前3项和为168,,则( )A.14 B.12 C.6 D.32.(2022·浙江)已知数列满足,则( )A. B. C. D.3.(2021·全国(文))记为等比数列的前n项和.若,,则( )A.7 B.8 C.9 D.104.(2021·北京)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长(单位:cm)成等差数列,对应的宽为(单位: cm),且长与宽之比都相等,已知,,,则A.64 B.96 C.128 D.1605.(2021·北京)已知是各项均为整数的递增数列,且,若,则的最大值为( )A.9 B.10 C.11 D.126.(2021·浙江)已知数列满足.记数列的前n项和为,则( )A. B. C. D.7.(2020·全国(文))设是等比数列,且,,则( )A.12 B.24 C.30 D.328.(2020·全国(文))如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤iA.5 B.8 C.10 D.159.(2020·全国(文))记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则=( )A.2n–1 B.2–21–n C.2–2n–1 D.21–n–110.(2020·北京)在等差数列中,,.记,则数列( ).A.有最大项,有最小项 B.有最大项,无最小项C.无最大项,有最小项 D.无最大项,无最小项11.(2020·浙江)已知等差数列{an}的前n项和Sn,公差d≠0,.记b1=S2,bn+1=S2n+2–S2n,,下列等式不可能成立的是( )A.2a4=a2+a6 B.2b4=b2+b6 C. D.12.(2019·全国(文))已知各项均为正数的等比数列的前4项和为15,且,则A.16 B.8 C.4 D.213.(2019·浙江)设,数列中,, ,则A.当 B.当C.当 D.当14.(2018·浙江)已知成等比数列,且.若,则A. B. C. D.二、填空题15.(2022·全国(文))记为等差数列的前n项和.若,则公差_______.16.(2022·北京)已知数列各项均为正数,其前n项和满足.给出下列四个结论:①的第2项小于3; ②为等比数列;③为递减数列; ④中存在小于的项.其中所有正确结论的序号是__________.17.(2020·山东)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.18.(2020·全国(文))数列满足,前16项和为540,则 ______________.19.(2020·全国(文))记为等差数列的前n项和.若,则__________.20.(2020·江苏)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和,则d+q的值是_______.21.(2019·全国(文))记Sn为等比数列{an}的前n项和.若,则S4=___________.22.(2019·全国(文))记为等差数列的前项和,若,则___________.23.(2019·江苏)已知数列是等差数列,是其前n项和.若,则的值是_____.24.(2018·江苏)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.三、解答题25.(2022·全国(文))记为数列的前n项和.已知.(1)证明:是等差数列;(2)若成等比数列,求的最小值.26.(2022·全国)记为数列的前n项和,已知是公差为的等差数列.(1)求的通项公式;(2)证明:.27.(2022·全国)已知为等差数列,是公比为2的等比数列,且.(1)证明:;(2)求集合中元素个数.28.(2022·北京)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;(2)若为连续可表数列,求证:k的最小值为4;(3)若为连续可表数列,且,求证:.29.(2022·天津)设是等差数列,是等比数列,且.(1)求与的通项公式;(2)设的前n项和为,求证:;(3)求.30.(2022·浙江)已知等差数列的首项,公差.记的前n项和为.(1)若,求;(2)若对于每个,存在实数,使成等比数列,求d的取值范围.31.(2021·全国(文))设是首项为1的等比数列,数列满足.已知,,成等差数列.(1)求和的通项公式;(2)记和分别为和的前n项和.证明:.32.(2021·全国(文))记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.33.(2021·全国)已知数列满足,(1)记,写出,,并求数列的通项公式;(2)求的前20项和.34.(2021·全国)记是公差不为0的等差数列的前n项和,若.(1)求数列的通项公式;(2)求使成立的n的最小值.35.(2021·北京)设p为实数.若无穷数列满足如下三个性质,则称为数列:①,且;②;③,.(1)如果数列的前4项为2,-2,-2,-1,那么是否可能为数列?说明理由;(2)若数列是数列,求;(3)设数列的前项和为.是否存在数列,使得恒成立?如果存在,求出所有的p;如果不存在,说明理由.36.(2021·天津)已知是公差为2的等差数列,其前8项和为64.是公比大于0的等比数列,.(I)求和的通项公式;(II)记,(i)证明是等比数列;(ii)证明37.(2021·浙江)已知数列的前n项和为,,且.(1)求数列的通项;(2)设数列满足,记的前n项和为,若对任意恒成立,求实数的取值范围.38.(2020·山东)已知公比大于的等比数列满足.(1)求的通项公式;(2)记为在区间中的项的个数,求数列的前项和.39.(2020·海南)已知公比大于的等比数列满足.(1)求的通项公式;(2)求.40.(2020·全国(文))设等比数列{an}满足,.(1)求{an}的通项公式;(2)记为数列{log3an}的前n项和.若,求m.41.(2020·北京)已知是无穷数列.给出两个性质:①对于中任意两项,在中都存在一项,使;②对于中任意项,在中都存在两项.使得.(Ⅰ)若,判断数列是否满足性质①,说明理由;(Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.42.(2020·天津)已知为等差数列,为等比数列,.(Ⅰ)求和的通项公式;(Ⅱ)记的前项和为,求证:;(Ⅲ)对任意的正整数,设求数列的前项和.43.(2020·江苏)已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ~k”数列.(1)若等差数列是“λ~1”数列,求λ的值;(2)若数列是“”数列,且an>0,求数列的通项公式;(3)对于给定的λ,是否存在三个不同的数列为“λ~3”数列,且an≥0 若存在,求λ的取值范围;若不存在,说明理由,44.(2020·浙江)已知数列{an},{bn},{cn}中,.(Ⅰ)若数列{bn}为等比数列,且公比,且,求q与{an}的通项公式;(Ⅱ)若数列{bn}为等差数列,且公差,证明:.45.(2019·全国(文))记Sn为等差数列{an}的前n项和,已知S9=-a5.(1)若a3=4,求{an}的通项公式;(2)若a1>0,求使得Sn≥an的n的取值范围.46.(2019·全国(文))已知是各项均为正数的等比数列,.(1)求的通项公式;(2)设,求数列的前n项和.47.(2019·北京(文))设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.48.(2019·天津(文)) 设是等差数列,是等比数列,公比大于,已知, ,.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足求.49.(2019·江苏)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;(2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.①求数列{bn}的通项公式;②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有成立,求m的最大值.50.(2019·浙江)设等差数列的前项和为,,,数列满足:对每成等比数列.(1)求数列的通项公式;(2)记 证明:51.(2018·全国(文))已知数列满足,,设.(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式.52.(2018·全国(文))记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值.53.(2018·全国(文))等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.54.(2018·北京(文))设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.55.(2018·天津(文))设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求Sn和Tn;(Ⅱ)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.56.(2018·江苏)设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).57.(2018·浙江)已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1 bn)an}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{bn}的通项公式.参考答案:1.D【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D.2.B【分析】先通过递推关系式确定除去,其他项都在范围内,再利用递推公式变形得到,累加可求出,得出,再利用,累加可求出,再次放缩可得出.【详解】∵,易得,依次类推可得由题意,,即,∴,即,,,…,,累加可得,即,∴,即,,又,∴,,,…,,累加可得,∴,即,∴,即;综上:.故选:B.【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩. 3.A【分析】根据题目条件可得,,成等比数列,从而求出,进一步求出答案.【详解】∵为等比数列的前n项和,∴,,成等比数列∴,∴,∴.故选:A.4.C【分析】设等差数列公差为,求得,得到,结合党旗长与宽之比都相等和,列出方程,即可求解.【详解】由题意,五种规格党旗的长(单位:cm)成等差数列,设公差为,因为,,可得,可得,又由长与宽之比都相等,且,可得,所以.故选:C.5.C【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得可能的最大值,然后构造数列满足条件,即得到的最大值.【详解】若要使n尽可能的大,则,递增幅度要尽可能小,不妨设数列是首项为3,公差为1的等差数列,其前n项和为,则,,所以.对于,,取数列各项为(,,则,所以n的最大值为11.故选:C.6.A【分析】显然可知,,利用倒数法得到,再放缩可得,由累加法可得,进而由局部放缩可得,然后利用累乘法求得,最后根据裂项相消法即可得到,从而得解.【详解】因为,所以,.由,即根据累加法可得,,当且仅当时取等号,,由累乘法可得,当且仅当时取等号,由裂项求和法得:所以,即.故选:A.【点睛】本题解题关键是通过倒数法先找到的不等关系,再由累加法可求得,由题目条件可知要证小于某数,从而通过局部放缩得到的不等关系,改变不等式的方向得到,最后由裂项相消法求得.7.D【分析】根据已知条件求得的值,再由可求得结果.【详解】设等比数列的公比为,则,,因此,.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.8.C【分析】根据原位大三和弦满足,原位小三和弦满足从开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:.∴;;;;.原位小三和弦满足:.∴;;;;.故个数之和为10.故选:C.【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.9.B【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前项和公式进行求解即可.【详解】设等比数列的公比为,由可得:,所以,因此.故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前项和公式的应用,考查了数学运算能力.10.B【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差,则其通项公式为:,注意到,且由可知,由可知数列不存在最小项,由于,故数列中的正项只有有限项:,.故数列中存在最大项,且最大项为.故选:B.【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.11.D【分析】根据题意可得,,而,即可表示出题中,再结合等差数列的性质即可判断各等式是否成立.【详解】对于A,因为数列为等差数列,所以根据等差数列的下标和性质,由可得,,A正确;对于B,由题意可知,,,∴,,,.∴,.根据等差数列的下标和性质,由可得,B正确;对于C,,当时,,C正确;对于D,,,.当时,,∴即;当时,,∴即,所以,D不正确.故选:D.【点睛】本题主要考查等差数列的性质应用,属于基础题.12.C【解析】利用方程思想列出关于的方程组,求出,再利用通项公式即可求得的值.【详解】设正数的等比数列{an}的公比为,则,解得,,故选C.【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.13.A【解析】若数列为常数列,,则只需使,选项的结论就会不成立.将每个选项的的取值代入方程,看其是否有小于等于10的解.选项B、C、D均有小于10的解,故选项B、C、D错误.而选项A对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A选项正确.【详解】若数列为常数列,则,由,可设方程选项A:时,,,,故此时不为常数列,,且,,则,故选项A正确;选项B:时,,,则该方程的解为,即当时,数列为常数列,,则,故选项B错误;选项C:时,,该方程的解为或,即当或时,数列为常数列,或,同样不满足,则选项C也错误;选项D:时,,该方程的解为,同理可知,此时的常数列也不能使,则选项D错误.故选:A.【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论的可能取值,利用“排除法”求解.14.B【分析】先证不等式,再确定公比的取值范围,进而作出判断.【详解】令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如15.2【分析】转化条件为,即可得解.【详解】由可得,化简得,即,解得.故答案为:2.16.①③④【分析】推导出,求出、的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【详解】由题意可知,,,当时,,可得;当时,由可得,两式作差可得,所以,,则,整理可得,因为,解得,①对;假设数列为等比数列,设其公比为,则,即,所以,,可得,解得,不合乎题意,故数列不是等比数列,②错;当时,,可得,所以,数列为递减数列,③对;假设对任意的,,则,所以,,与假设矛盾,假设不成立,④对.故答案为:①③④.【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.17.【分析】首先判断出数列与项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【详解】因为数列是以1为首项,以2为公差的等差数列,数列是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列是以1为首项,以6为公差的等差数列,所以的前项和为,故答案为:.【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.18.【分析】对为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用表示,由偶数项递推公式得出偶数项的和,建立方程,求解即可得出结论.【详解】,当为奇数时,;当为偶数时,.设数列的前项和为,,.故答案为:.【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.19.【分析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案为:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.20.【分析】结合等差数列和等比数列前项和公式的特点,分别求得的公差和公比,由此求得.【详解】设等差数列的公差为,等比数列的公比为,根据题意.等差数列的前项和公式为,等比数列的前项和公式为,依题意,即,通过对比系数可知,故.故答案为:【点睛】本小题主要考查等差数列和等比数列的前项和公式,属于中档题.21..【分析】本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】详解:设等比数列的公比为,由已知,即解得,所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算,避免繁分式计算.22.100【分析】根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.23.16.【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:,解得:,则.【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建的方程组.24.27【分析】方法一:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.【详解】[方法一]:【通性通法】【最优解】设,则由得,化简得,,解得:,即.所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由即,解得,所以得满足条件的最小值为.故答案为:.[方法二]:列举法+二分法与相比,B元素间隔大.因此利用列举法从中元素构成看,分别加了几个B中元素进行考虑.1个:;2个:;3个:;4个:;5个:;6个:.发现当时,发生变号,以下用二分法查找:,所以所求n应在22~29之间.,所以所求n应在25~29之间.,,不符合条件;,,符合条件.因为,而,故答案为:.【整体点评】方法一:先由求和公式寻找不等式成立的充分条件,即当第项的值大于等于时,不等式成立,再寻找第项的值在与之间时是否也可以有满足题意的解,从而解出,是本题的通性通法,也是最优解;方法二:根据两个集合的特征,一一列举集合中的元素,并研究集合中元素的和与的变化规律,从而找出可能满足不等式的解,再由二分法验证解出,该法计算较为麻烦.25.(1)证明见解析;(2).【分析】(1)依题意可得,根据,作差即可得到,从而得证;(2)法一:由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得.【详解】(1)因为,即①,当时,②,①②得,,即,即,所以,且,所以是以为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得,,,又,,成等比数列,所以,即,解得,所以,所以,所以,当或时,.[方法二]:【最优解】邻项变号法由(1)可得,,,又,,成等比数列,所以,即,解得,所以,即有.则当或时,.【整体点评】(2)法一:根据二次函数的性质求出的最小值,适用于可以求出的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.26.(1)(2)见解析【分析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;(2)由(1)的结论,利用裂项求和法得到,进而证得.【详解】(1)∵,∴,∴,又∵是公差为的等差数列,∴,∴,∴当时,,∴,整理得:,即,∴,显然对于也成立,∴的通项公式;(2)∴27.(1)证明见解析;(2).【分析】(1)设数列的公差为,根据题意列出方程组即可证出;(2)根据题意化简可得,即可解出.【详解】(1)设数列的公差为,所以,,即可解得,,所以原命题得证.(2)由(1)知,,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为.28.(1)是连续可表数列;不是连续可表数列.(2)证明见解析.(3)证明见解析.【分析】(1)直接利用定义验证即可;(2)先考虑不符合,再列举一个合题即可;(3)时,根据和的个数易得显然不行,再讨论时,由可知里面必然有负数,再确定负数只能是,然后分类讨论验证不行即可.(1),,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.(2)若,设为,则至多,6个数字,没有个,矛盾;当时,数列,满足,,,,,,,, .(3),若最多有种,若,最多有种,所以最多有种,若,则至多可表个数,矛盾,从而若,则,至多可表个数,而,所以其中有负的,从而可表1~20及那个负数(恰 21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为 ,则所有数之和,,,再考虑排序,排序中不能有和相同,否则不足个,(仅一种方式),与2相邻,若不在两端,则形式,若,则(有2种结果相同,方式矛盾),, 同理 ,故在一端,不妨为形式,若,则 (有2种结果相同,矛盾),同理不行,,则 (有2种结果相同,矛盾),从而,由于,由表法唯一知3,4不相邻,、故只能,①或,②这2种情形,对①:,矛盾,对②:,也矛盾,综上,当时,数列满足题意,.【点睛】关键点睛,先理解题意,是否为可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从到中间的任意一个值.本题第二问时,通过和值可能个数否定;第三问先通过和值的可能个数否定,再验证时,数列中的几项如果符合必然是的一个排序,可验证这组数不合题.29.(1)(2)证明见解析(3)【分析】(1)利用等差等比数列的通项公式进行基本量运算即可得解;(2)由等比数列的性质及通项与前n项和的关系结合分析法即可得证;(3)先求得,进而由并项求和可得,再结合错位相减法可得解.【详解】(1)设公差为d,公比为,则,由可得(舍去),所以;(2)证明:因为所以要证,即证,即证,即证,而显然成立,所以;(3)因为,所以,设所以,则,作差得,所以,所以.30.(1)(2)【分析】(1)利用等差数列通项公式及前项和公式化简条件,求出,再求;(2)由等比数列定义列方程,结合一元二次方程有解的条件求的范围.【详解】(1)因为,所以,所以,又,所以,所以,所以,(2)因为,,成等比数列,所以,,,由已知方程的判别式大于等于0,所以,所以对于任意的恒成立,所以对于任意的恒成立,当时,,当时,由,可得当时,,又所以31.(1),;(2)证明见解析.【分析】(1)利用等差数列的性质及得到,解方程即可;(2)利用公式法、错位相减法分别求出,再作差比较即可.【详解】(1)因为是首项为1的等比数列且,,成等差数列,所以,所以,即,解得,所以,所以.(2)[方法一]:作差后利用错位相减法求和,,.设, ⑧则. ⑨由⑧-⑨得.所以.因此.故.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得,,①,②①②得 ,所以,所以,所以.[方法三]:构造裂项法由(Ⅰ)知,令,且,即,通过等式左右两边系数比对易得,所以.则,下同方法二.[方法四]:导函数法设,由于,则.又,所以,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造,使,求得的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.32.证明见解析.【分析】先根据求出数列的公差,进一步写出的通项,从而求出的通项公式,最终得证.【详解】∵数列是等差数列,设公差为∴,∴,∴当时,当时,,满足,∴的通项公式为,∴∴是等差数列.【点睛】在利用求通项公式时一定要讨论的特殊情况.33.(1);(2).【分析】(1)方法一:由题意结合递推关系式确定数列的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然为偶数,则,所以,即,且,所以是以2为首项,3为公差的等差数列,于是.[方法二]:奇偶分类讨论由题意知,所以.由(为奇数)及(为偶数)可知,数列从第一项起,若为奇数,则其后一项减去该项的差为1,若为偶数,则其后一项减去该项的差为2.所以,则.[方法三]:累加法由题意知数列满足.所以,,则.所以,数列的通项公式.(2)[方法一]:奇偶分类讨论.[方法二]:分组求和由题意知数列满足,所以.所以数列的奇数项是以1为首项,3为公差的等差数列;同理,由知数列的偶数项是以2为首项,3为公差的等差数列.从而数列的前20项和为:.【整体点评】(1)方法一:由题意讨论的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列的通项公式,然后累加求数列的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前项和公式和分组的方法进行求和是一种不错的选择.34.(1);(2)7.【分析】(1)由题意首先求得的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.【详解】(1)由等差数列的性质可得:,则:,设等差数列的公差为,从而有:,,从而:,由于公差不为零,故:,数列的通项公式为:.(2)由数列的通项公式可得:,则:,则不等式即:,整理可得:,解得:或,又为正整数,故的最小值为.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.35.(1)不可以是数列;理由见解析;(2);(3)存在;.【分析】(1)由题意考查的值即可说明数列不是数列;(2)由题意首先确定数列的前4项,然后讨论计算即可确定的值;(3)构造数列,易知数列是的,结合(2)中的结论求解不等式即可确定满足题意的实数的值.【详解】(1)因 为 所以,因 为所 以所以数列,不可能是数列.(2)性质①,由性质③,因此或,或,若,由性质②可知,即或,矛盾;若,由有,矛盾.因此只能是.又因为或,所以或.若,则,不满足,舍去.当,则前四项为:0,0,0,1,下面用数学归纳法证明:当时,经验证命题成立,假设当时命题成立,当时:若,则,利用性质③:,此时可得:;否则,若,取可得:,而由性质②可得:,与矛盾.同理可得:,有;,有;,又因为,有即当时命题成立,证毕.综上可得:,.(3)令,由性质③可知:,由于,因此数列为数列.由(2)可知:若;,,因此,此时,,满足题意.【点睛】本题属于数列中的“新定义问题”,“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.36.(I),;(II)(i)证明见解析;(ii)证明见解析.【分析】(I)由等差数列的求和公式运算可得的通项,由等比数列的通项公式运算可得的通项公式;(II)(i)运算可得,结合等比数列的定义即可得证;(ii)放缩得,进而可得,结合错位相减法即可得证.【详解】(I)因为是公差为2的等差数列,其前8项和为64.所以,所以,所以;设等比数列的公比为,所以,解得(负值舍去),所以;(II)(i)由题意,,所以,所以,且,所以数列是等比数列;(ii)由题意知,,所以,所以,设,则,两式相减得,所以,所以.【点睛】关键点点睛:最后一问考查数列不等式的证明,因为无法直接求解,应先放缩去除根号,再由错位相减法即可得证.37.(1);(2).【分析】(1)由,结合与的关系,分讨论,得到数列为等比数列,即可得出结论;(2)由结合的结论,利用错位相减法求出,对任意恒成立,分类讨论分离参数,转化为与关于的函数的范围关系,即可求解.【详解】(1)当时,,,当时,由①,得②,①②得,,又是首项为,公比为的等比数列,;(2)由,得,所以,,两式相减得,所以,由得恒成立,即恒成立,时不等式恒成立;时,,得;时,,得;所以.【点睛】易错点点睛:(1)已知求不要忽略情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中恒成立,要对讨论,还要注意时,分离参数不等式要变号.38.(1);(2).【分析】(1)利用基本元的思想,将已知条件转化为的形式,求解出,由此求得数列的通项公式.(2)方法一:通过分析数列的规律,由此求得数列的前项和.【详解】(1)由于数列是公比大于的等比数列,设首项为,公比为,依题意有,解得解得,或(舍),所以,所以数列的通项公式为.(2)[方法一]:规律探索由于,所以对应的区间为,则;对应的区间分别为,则,即有2个1;对应的区间分别为,则,即有个2;对应的区间分别为,则,即有个3;对应的区间分别为,则,即有个4;对应的区间分别为,则,即有个5;对应的区间分别为,则,即有37个6.所以.[方法二]【最优解】:由题意,,即,当时,.当时,,则.[方法三]:由题意知,因此,当时,;时,;时,;时,;时,;时,;时,.所以.所以数列的前100项和.【整体点评】(2)方法一:通过数列的前几项以及数列的规律可以得到的值,从而求出数列的前项和,这是本题的通性通法;方法二:通过解指数不等式可得数列的通项公式,从而求出数列的前项和,是本题的最优解;方法三,是方法一的简化版.39.(1);(2)【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列的通项公式,然后结合等比数列前n项和公式求解其前n项和即可.【详解】(1) 设等比数列的公比为q(q>1),则,整理可得:,,数列的通项公式为:.(2)由于:,故:.【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础.40.(1);(2).【分析】(1)设等比数列的公比为,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出的通项公式,利用等差数列求和公式求得,根据已知列出关于的等量关系式,求得结果.【详解】(1)设等比数列的公比为,根据题意,有,解得,所以;(2)令,所以,根据,可得,整理得,因为,所以,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.41.(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【分析】(Ⅰ)根据定义验证,即可判断;(Ⅱ)根据定义逐一验证,即可判断;(Ⅲ)解法一:首先,证明数列中的项数同号,然后证明,最后,用数学归纳法证明数列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得成等比数列,之后证得成等比数列,同理即可证得数列为等比数列,从而命题得证.【详解】(Ⅰ)不具有性质①;(Ⅱ)具有性质①;具有性质②;(Ⅲ)解法一首先,证明数列中的项数同号,不妨设恒为正数:显然,假设数列中存在负项,设,第一种情况:若,即,由①可知:存在,满足,存在,满足,由可知,从而,与数列的单调性矛盾,假设不成立.第二种情况:若,由①知存在实数,满足,由的定义可知:,另一方面,,由数列的单调性可知:,这与的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号.其次,证明:利用性质②:取,此时,由数列的单调性可知,而,故,此时必有,即,最后,用数学归纳法证明数列为等比数列:假设数列的前项成等比数列,不妨设,其中,(的情况类似)由①可得:存在整数,满足,且 (*)由②得:存在,满足:,由数列的单调性可知:,由可得: (**)由(**)和(*)式可得:,结合数列的单调性有:,注意到均为整数,故,代入(**)式,从而.总上可得,数列的通项公式为:.即数列为等比数列.解法二:假设数列中的项数均为正数:首先利用性质②:取,此时,由数列的单调性可知,而,故,此时必有,即,即成等比数列,不妨设,然后利用性质①:取,则,即数列中必然存在一项的值为,下面我们来证明,否则,由数列的单调性可知,在性质②中,取,则,从而,与前面类似的可知则存在,满足,若,则:,与假设矛盾;若,则:,与假设矛盾;若,则:,与数列的单调性矛盾;即不存在满足题意的正整数,可见不成立,从而,然后利用性质①:取,则数列中存在一项,下面我们用反证法来证明,否则,由数列的单调性可知,在性质②中,取,则,从而,与前面类似的可知则存在,满足,即由②可知:,若,则,与假设矛盾;若,则,与假设矛盾;若,由于为正整数,故,则,与矛盾;综上可知,假设不成立,则.同理可得:,从而数列为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列为等比数列.【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.42.(Ⅰ),;(Ⅱ)证明见解析;(Ⅲ).【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列前n项和,然后利用作差法证明即可;(Ⅲ)分类讨论n为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算和的值,据此进一步计算数列的前2n项和即可.【详解】(Ⅰ)设等差数列的公差为,等比数列的公比为q.由,,可得d=1.从而的通项公式为.由,又q≠0,可得,解得q=2,从而的通项公式为.(Ⅱ)证明:由(Ⅰ)可得,故,,从而,所以.(Ⅲ)当n为奇数时,,当n为偶数时,,对任意的正整数n,有,和 ①由①得 ②由①②得,由于,从而得:.因此,.所以,数列的前2n项和为.【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.43.(1)1(2)(3)【分析】(1)根据定义得,再根据和项与通项关系化简得,最后根据数列不为零数列得结果;(2)根据定义得,根据平方差公式化简得,求得,即得;(3)根据定义得,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)(2),(3)假设存在三个不同的数列为数列.或或∵对于给定的,存在三个不同的数列为数列,且或有两个不等的正根.可转化为,不妨设,则有两个不等正根,设.① 当时,,即,此时,,满足题意.② 当时,,即,此时,,此情况有两个不等负根,不满足题意舍去.综上,【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.44.(I);(II)证明见解析.【分析】(I)根据,求得,进而求得数列的通项公式,利用累加法求得数列的通项公式.(II)利用累乘法求得数列的表达式,结合裂项求和法证得不等式成立.【详解】(I)依题意,而,即,由于,所以解得,所以.所以,故,所以数列是首项为,公比为的等比数列,所以.所以().所以,又,符合,故.(II)依题意设,由于,所以,故.又,而,故所以.由于,所以,所以.即, .【点睛】本小题主要考查累加法、累乘法求数列的通项公式,考查裂项求和法,属于中档题.45.(1);(2).【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于和的方程组,求得和的值,利用等差数列的通项公式求得结果;(2)根据题意有,根据,可知,根据,得到关于的不等式,从而求得结果.【详解】(1)设等差数列的首项为,公差为,根据题意有,解答,所以,所以等差数列的通项公式为;(2)由条件,得,即,因为,所以,并且有,所以有,由得,整理得,因为,所以有,即,解得,所以的取值范围是:【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.46.(1);(2).【分析】(1)本题首先可以根据数列是等比数列将转化为,转化为,再然后将其带入中,并根据数列是各项均为正数以及即可通过运算得出结果;(2)本题可以通过数列的通项公式以及对数的相关性质计算出数列的通项公式,再通过数列的通项公式得知数列是等差数列,最后通过等差数列求和公式即可得出结果.【详解】(1)因为数列是各项均为正数的等比数列,,,所以令数列的公比为,,,所以,解得(舍去)或,所以数列是首项为、公比为的等比数列,.(2)因为,所以,,,所以数列是首项为、公差为的等差数列,.【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.47.(Ⅰ);(Ⅱ).【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.48.(I),;(II)【分析】(I)首先设出等差数列的公差,等比数列的公比,根据题意,列出方程组,求得,进而求得等差数列和等比数列的通项公式;(II)根据题中所给的所满足的条件,将表示出来,之后应用分组求和法,结合等差数列的求和公式,以及错位相减法求和,最后求得结果.【详解】(I)解:设等差数列的公差为,等比数列的公比为,依题意,得,解得,故,,所以,的通项公式为,的通项公式为;(II),记 ①则 ②②①得,,所以.【点睛】本小题主要考查等差数列、等比数列的通项公式及前项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.49.(1)见解析;(2)①bn=n;②5.【分析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{bn}是等差数列,据此即可确定其通项公式;②由①确定的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m的最大值.【详解】(1)设等比数列{an}的公比为q,所以a1≠0,q≠0.由,得,解得.因此数列为“M—数列”.(2)①因为,所以.由得,则.由,得,当时,由,得,整理得.所以数列{bn}是首项和公差均为1的等差数列.因此,数列{bn}的通项公式为bn=n.②由①知,bk=k,.因为数列{cn}为“M–数列”,设公比为q,所以c1=1,q>0.因为ck≤bk≤ck+1,所以,其中k=1,2,3,…,m.当k=1时,有q≥1;当k=2,3,…,m时,有.设f(x)=,则.令,得x=e.列表如下:x e (e,+∞)+ 0 –f(x) 极大值因为,所以.取,当k=1,2,3,4,5时,,即,经检验知也成立.因此所求m的最大值不小于5.若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6.综上,所求m的最大值为5.【点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.50.(1),;(2)证明见解析.【分析】(1)首先求得数列的首项和公差确定数列的通项公式,然后结合三项成等比数列的充分必要条件整理计算即可确定数列的通项公式;(2)结合(1)的结果对数列的通项公式进行放缩,然后利用不等式的性质和裂项求和的方法即可证得题中的不等式.【详解】(1)由题意可得:,解得:,则数列的通项公式为 .其前n项和.则成等比数列,即:,据此有:,故.(2)结合(1)中的通项公式可得:,则.【点睛】本题主要考查数列通项公式的求解,,裂项求和的方法,数列中用放缩法证明不等式的方法等知识,意在考查学生的转化能力和计算求解能力.51.(1),,;(2)是首项为,公比为的等比数列.理由见解析;(3).【分析】(1)根据,求得和,再利用,从而求得,,;(2)方法一:利用条件可以得到,从而可以得出,这样就可以得到数列是首项为,公比为的等比数列;(3)方法一:借助等比数列的通项公式求得,从而求得.【详解】(1)由条件可得,将代入得,,而,所以,.将代入得,,所以,.(2)[方法1]:【通性通法】定义法由以及可知,,,所以,,又,所以为等比数列.[方法2]:等比中项法由知,所以,.由知,所以.所以为等比数列.(3)[方法1]:【最优解】定义法由(2)知,所以.[方法2]:累乘法因为,累乘得:.所以.【整体点评】(2)方法一:利用定义证明数列为等比数列,是通性通法;方法二:利用等差中项法判断数列为等比数列,也是常用方法;(3)方法一:根据(2)中结论利用等比数列的通项公式求解,是该题的最优解;方法二:根据递推式特征利用累乘法求通项公式.52.(1);(2),最小值为–16.【分析】(1)方法一:根据等差数列前n项和公式,求出公差,再代入等差数列通项公式即得结果;(2)方法二:根据等差数列前n项和公式得,根据二次函数的性质即可求出.【详解】(1)[方法一]:【通性通法】【最优解】 公式法设等差数列的公差为,由得,,解得:,所以.[方法二]:函数+待定系数法设等差数列通项公式为,易得,由,即,即,解得:,所以.(2)[方法1]:邻项变号法由可得.当,即,解得,所以的最小值为,所以的最小值为.[方法2]:函数法由题意知,即,所以的最小值为,所以的最小值为.【整体点评】(1)方法一:直接根据基本量的计算,利用等差数列前n项和公式求出公差,即可得到通项公式,是该题的通性通法,也是最优解;方法二:根据等差数列的通项公式的函数形式特征,以及等差数列前n项和的性质,用待定系数法解方程组求解;(2)方法一:利用等差数列前n项和公式求,再利用邻项变号法求最值;方法二:利用等差数列前n项和公式求,再根据二次函数性质求最值.53.(1)或 .(2).【详解】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m.详解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,.点睛:本题主要考查等比数列的通项公式和前n项和公式,属于基础题.54.(I);(II).【分析】(I)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(II)由(I)可得,进而可利用等比数列求和公式进行求解.【详解】(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.55.(Ⅰ),;(Ⅱ)4.【分析】(I)由题意得到关于q的方程,解方程可得,则.结合题意可得等差数列的首项和公差为,则其前n项和.(II)由(I),知 据此可得 解得(舍),或.则n的值为4.【详解】(I)设等比数列的公比为q,由b1=1,b3=b2+2,可得.因为,可得,故.所以,.设等差数列的公差为.由,可得.由,可得从而,故,所以,.(II)由(I),有由,可得,整理得解得(舍),或.所以n的值为4.点睛:本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.56.(1)d的取值范围为;(2)d的取值范围为,证明见解析.【分析】(1)根据题意结合并分别令n=1,2,3,4列出不等式组,即可解得公差d的取值范围;(2)方法一:先根据绝对值定义将不等式转化为,根据条件易得左边不等式恒成立,再利用数列单调性确定右边单调递增,转化为最小值问题,即得公差d的取值范围.【详解】(1)由条件知:.因为对n=1,2,3,4均成立,即对n=1,2,3,4均成立,即11,1d3,32d5,73d9,得.因此,d的取值范围为.(2)[方法一]:分参求最值由条件知:.若存在d,使得(n=2,3,···,m+1)成立,即,即当时,d满足.因为,则,从而,,对均成立.因此,取d=0时,对均成立.下面讨论数列的最大值和数列的最小值().①当时,,当时,有,从而.因此,当时,数列单调递增,故数列的最大值为.②设,当x>0时,,所以单调递减,从而当时,,因此,当时,数列单调递减,故数列的最小值为.因此,d的取值范围为.[方法二]:. ①记,则由①知,.下面探究的单调性.先探究数列的单调性..因为,所以,所以,即为单调递增数列,所以.再探究数列的单调性.,记,由知单调递增,所以.下面证当时,,即证.因为,所以只要证.设,则,即为.设,则.所以.所以在内单调递减,故,由上可知数列为单调递减数列,所以.即,d的取值范围为.[方法三]:前面步骤同方法二,只是探究数列的单调性方式不同,因为,所以.设,则.因为,所以,所以在上单调递减.由上可知数列为单调递减数列,所以.后略.[方法四]:前面步骤同方法二,只是探究数列的单调性方式不同,,则.令,则,所以在上单调递减.所以为单调递减数列,.综上所述,存在满足要求的d,且.【整体点评】(2)方法一:根据绝对值定义将不等式转化为,再根据恒成立问题的解法,分别求出不等式左右两式的最大值和最小值,即可证出,并得到的范围;方法二:利用分参思想得到,与方法一相比,判断数列单调性最小值的方式不同,方法一用作商法,方法二用作差法;方法三:利用分参思想得到,与方法二相比,判断数列单调性最小值的方式不同,借助导数,判断数列对应函数的单调性,从而求出数列的最小值;方法四:利用分参思想得到,与方法二相比,判断数列单调性最小值的方式不同,利用对数性质,构造函数,利用导数研究其单调性,从而求出数列的最小值.57.(Ⅰ);(Ⅱ).【分析】分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比;(Ⅱ)先根据数列前n项和求通项,解得,再通过叠加法以及错位相减法求.【详解】详解:(Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故, .设,所以,因此,又,所以.点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.试卷第1页,共3页试卷第1页,共3页 展开更多...... 收起↑ 资源预览