初中物理思维方法大全——方法16比例法 素材

资源下载
  1. 二一教育资源

初中物理思维方法大全——方法16比例法 素材

资源简介



- 14 -
例关系存在
U2==R
串联电路电流处处相等,那么串联电路各个电阻两端的电压与通过这段电路的电流有比
例关系存在
RI R2
并联电路各条支路两端的电压都相等,那么通过各支路的电流与这条支路的电阻也有比
例关系存在。
1R2
R
对于一台机器,若功率确定,那么这台机器做功的多少与做这些功所花的时间有比例关
系存在
Wi-W2=...-P
tr t2
对于需要完成一定的功,则机器的功率与完成这些功所花的时间有比例关系存在
-2
卫2
t
电热器在相同的电压下,产生相同的热量,则有Q,。
t1,Q2
一t2;因为
Q1=Q2,所以有以下比例关系
U2t1-
U22,即
【树1】在爆破技术中,为了使装在钻孔里的炸药爆炸,要用一种燃烧速度不大的
为线。引火线燃烧的速度是0.8厘米秒,人跑开的速度是5米秒。为了在点着引火线后,
人来得及跑到150米以外的A全专区,引火线至少要多长?
■本题须挖掘一个至关重要的隐含条件一一引火线燃烧的时间与人跑完150
米距离所需的时间相等。解题的具体方法有常规解法与比例法两种。
【解】方法1推法:
先求出人跑到150米以外的A全地区所需的时间,然后把这个时间应用于弓引火线燃烧,
求出引火线的长度。
对于人的运动,因为v-:,所以有t=人=150如
8
=30s
t
对于引火线燃烧,因为v=9,所以31=vt=0.8厘米秒×0秒=24厘米
t
方法2比树法:
人运动的时间与引火线燃烧的时间相等,所以运动通过的路程与运动的速度成正比,即
50m
5m/s

0.008m/s
S1=0.24m=24cm
答:引火线的长度至少为24厘米,才能让人来得及跑到A全地区。
用让比例法解题,首先应明确题中所述的物理过程中那些物理量存在什么样的比例
关系,然后才能列出相应的比例方程,代入数据,进行计算,得出结论。本题运算中,由于
运用此例法,省略了时间运箅的中间步骤,简捷有力。
【例2】电线杆在阳光的照射下,影长5.6米。一位身高2米的人直立时影长1.5米,
那么电线杆长度为()
A、7.0米
B、7.5米
C、8.0米
D、8.5米
电线杆和人在同一光源的照射下,其高度与影长的比例应该是相同的。这里
存在这样一个比例关系:
人的高度电线杆的高度
人的长一
电线杆的影长
,利用这种比例关系,不难求出电
线杆的长度。
【解】设人的高度为L人,人的影长为L人’,电线杆的高度为L托,电线杆的长度为
杆’,则本题中存在这样一个比例关系:
少托
代入数据可得:
2m
5.om1
1.m
解之得:
L托=7.5m
答:电线杆的高度为7.5m。

展开更多......

收起↑

资源预览