资源简介 第十八章平行四边形EAO=/FCO.∠BAF=∠DCE.在△ABF和△CDE中,E,F分别是AD,BC的中点,∴DE=7AD,BF=BCA0=C0,.△AOE≌△COF(ASA).AE=CF.í∠BAF=∠DCE,18.1平行四边形∠AOE=∠COF∠2=∠1,∴.△ABF≌△CDE(AAS).∴AF=CE,DE LBF,四边形DEBF是平行四边形,BE∥DF,18.1.1平行四边形的性质7.证明::四边形ABCD是平行四边形,AB=CD.∴.∠GBO=∠HDO.在△GBO和△HDO中,第1课时平行四边形的边、角性质.AB∥CD,OB=OD..∠1=∠2.在△BOE即AE十EF=CF十EF.∴,AE=CFI∠GBO=∠HDO,课前预习:1,两组对边分别平行的四边形叫做平行四边形「∠E=∠F,(2)连接BD交AC于点O.:四边形OB=OD.,.△GBO)≌AHDD(ASA),,.G2.□ABCD平行四边形ABCD顶点AB与CD,AD与和△DOF中,∠3=∠4,∴.△BOE≌△DOFABCD是平行四边形,.OB=OD.OA∠GOB=∠HOD,BCAB与BC,BC与CD∠BAD与∠BCD,∠ABC与OB=OD.OC.AE=CF,∴.OE=OF.∴.四边形EBFD是平行四边形OH.又OA=OC,∴.OA-OG=OC-OH,即∠ADC∠BAD与∠ABCAC,BD3.(1)两组对边分别AAS)..∠EBO=∠FDO.∴.∠EBO∠1∠FDC7.证明:(1):在Rt△ABC中,∠BAC=30°,∴.AB=2BCAG=CH.8.(1)证明:连接PM,PN.M平行(定义)(2)对边相等(3)对角相等4.任意一点∠2,即∠ABE=∠CDF.8.C9.310.3√7,△ABE是等边三角形,EF⊥AB,AB=2AF,AB=AEP分别是边AB,BC的中点,.PM∥AC距离相等课后作业:1.C2.D3.1PM=AC.,N,P分别是边CD,BC的中当堂训练:1.平行四边形2.93.D4.80°5.21六AF=BC.在R△ABC和R:△EAF中,BC=AFAB=AE.6.证明:四边形ABCD是平行四边形,∴.AD=BC,∠A=5.4v3-36.证明:连接BD交AC于点∴.Rt△ABC≌Rt△EAF(HL)..AC=EF.(2)△ACD点,PN∥BD,PN=BD.又,AC=BD,.PM=PN∠C,AD∥BC.∴∠E=∠F.BE=DF,AF=EC.在O.:四边形ABCD是平行四边形,是等边三角形,.∠DAC=60°,AC=AD.又∠BAC=30°,「∠A=∠C,∴.AO=CO0.同理OE=OF,.AO-OE=CO-OF,即AE,Q是MN的中点,∴.MQ=NQ.∴.PQ⊥MN.(2)解:CF.7.(1)解::AE⊥BD,.∠AEO=90°.∠AOE∴.∠DAB=∠DAC+∠BAC=90°.∴.∠EFA=∠DAB=△OEF的形状是等腰三角形.理由如下:,PM∥AC,△AGF和△CHE中.AF=CE.∴.△AGF≌△CHE90°.又由(1)知AC=EF,.EF=AD.在△AEF和△FDA∴.∠PMN=∠EFO.:PN∥BD,∴.∠OEF=∠PNM.又l∠F=∠E,50°,∴.∠EAO=40°.:AC平分∠DAE,.∠OAD=(EF=AD.PM=PN,.∠PMN=∠PNM..∠EFO=∠OEF(ASA).∴.AG=CH.7.S=Se=S8.相等∠EAO=40°.:四边形ABCD是平行四边形,∴AD∥BC中,3∠EFA=∠DAF,.△AEF2△FDA..AE=FD.∴△OEF的形状是等腰三角形.课后作业1.B2.C3.C4.205.3或56.号∴.∠ACB=∠OAD=40°.(2)证明::四边形ABCD是平AF=AF.行四边形,∴AO=CO.AE⊥BD,CF⊥BD,∠AEO=9.证明:(1):△ABC是等边三角形,∴∠ABC∴.四边形ADFE是平行四边形.8.证明:(1):△ACD是7.证明::在□ABCD中,AD=BC,AD∥BC,.∠ADF∠AEO=∠CFO,60°,又∠EFB=60°,.∠ABC=∠EFB.等边三角形,∠ACD=60.:∠BAC=60,∠BAC=∠CBE.,BF=DE,∴.BF+BD=DE十BD,即DF=BE.在∠CFO=90°.在△AEO和△CFO中.∠EOA=∠FOCEF∥DC.又DC=EF,.四边形EFCD是平∠ACD..E是AC的中点,∴.AE=EC.在△ABE和△CFE(AD-CB,AO=CO.行四边形.(2)连接BE.:∠EFB=60°,BF=EF∠BAE=∠FCE,△ADF和△CBE中,∠ADF=∠CBE,.△ADF≌.△AEO≌△CFO(AAS)..AE=CF.8.(1)证明::四边中,{AE=CE,△ABE≌△CFE(ASA).∴.△BEF为等边三角形.∴.BE=BF=EF,∠ABE=60IDF-BE.形ABCD是平行四边形,∴AD∥BC,AO=CO.∴∠EAO∠AEB=∠CEF,CD=EF,.BE=CD又,△ABC为等边三角形,.AB△CBE(SAS),.∠F=∠E.∴.AF∥CE.8.(1)解:四边FCO.:∠AOE=∠COF,.△AOE≌△COF..OE(2)由(1)知∠BAC=∠DCA,AB=CF,.CD∥AB,即DF∥AC,∠ACD=60.∴.∠ABE=∠ACD..△ABE≌△ACD.形ABCD是平行四边形,∴AB∥CD.,∠ABC十∠BCD=OF.(2)解:能得到OE=OF,方法同(1).一般性结论AB.,△ACD是等边三角形,.∠D=60.在Rt△ABC中,..AE=AD.180°.:CF平分∠DCB,∴,∠BCD=2∠BCF=120°条过平行四边形对角线交点的直线与平行四边形的对边(或专题二平行四边形的计算与证明,∠ABC=180°-∠BCD=60°.(2)证明::四边形ABCD∠BAC=60,·∠ACB=30.·AB=7AC.:AE对边延长线)相交,交点到对角线交点的距离相等1.B2.C3.A4.B5.D6.30°7.88.169.3是平行四边形,,AB∥CD,AB=CD,∠BAD=∠BCD.18.1.2平行四边形的判定CE=2AC,·AB=CE.·CE=CF.又∠DCA=60,.∠ABE=∠CDF.AE,CF分别平分∠BAD和∠DCB10.①②③1.212.S,=513.证明:四边形第1课时平行四边形的判定(一】∴△CEF是等边三角形.∴∠EFC=60°.∠EFC=∠D.∠BAE=号∠BAD,∠DCF=,∠BCD..∠BAE=课前预习:1.两组对边分别平行的四边形叫做平行四边形BF∥AD..四边形ABFD是平行四边形.ABCD是平行四边形,AD∥BC,AD=BC.:E,F分别是∠DCF..△ABE≌△CDF(ASA)..BE=DF,两组对边分别平行的性质2.(1)两组对边分别相等的四边第2课时平行四边形的判定(二)AD,BC的中点∴AE=7AD,CF=7BC.∴AE=CF.又形(2)两组对角分别相等的四边形(3)对角线互相平分课前预习:1.平行相等2.中点3.平行第三边的一半9.(1)证明::在□ABCD中,AD∥BC,∴.∠DAE=∠F,∠D=AE∥CF,.四边形AECF为平行四边形.AF∥CE.同理∠FCE.点E是CD的中点,∴DE=CE.在△ADE和△FCE的四边形∥BCBE∥DF.∴四边形EGFH为平行四边形.∴.EF与GH互I∠DAE=-∠F当堂训练:1.C2.平行四边形3.证明:,DE∥BF,当堂训练:1.C2.43.证明:四边形ABCD是平行四边中,∠D=∠FCE,∴△ADE≌△FCE.(2)解:在□ABCD∴.∠DEF=∠BFE.:∠AED=∠CFB.又AD∥BC,相平分.14.解:FO=方AB且FO∥AB.理由::四边形DE=CE,∴.∠DAF=∠BCF.又AE=CF,∴.△ADE≌△CBF.∴.AD=形,.AD=BC,AD∥BC.:BE=SBC,FD=3AD,ABCD是平行四边形,.OA=OC,AB∥CD,AB=CD.中,CD=AB,BC=AD.BC=5..AD=5.由(1)知△ADE≌BC.又AB=CD,∴.四边形ABCD为平行四边形.4.B5.D.BE=DF.,DF∥BE,四边形BEDF是平行四边形∴∠ABF=∠ECF,∠BAF=∠E.又CE=DC,∴CE=AB△FCE,∴CF=AD=5,AE=EF=3.∴.AF=6,BF=10.又6.D7.平行四边形4.C5.B6.C7.17°8.89.解:连接DE,FG.:BD,CE是△ABC的中线,.△ABF≌△ECF.∴BF=CF.∴.OF为△ABC的中位线∠BAF=90°,.在Rt△ABF中,由勾股定理,得CD=AB=8.解:四边形ABFC是平行四边形,证明如下:,AB∥CD,D,E分别是AC,AB边的中点.DE∥.FO=号AB且FO∥AB.15.(1)证明:四边形ABCD√/B-AF=√/10-6=8.即CD的长为8.∴.∠BAE=∠CFE.点E是BC的中点,.CE=BE.在第2课时平行四边形的对角线的性质'∠BAE=∠CFE,BC,DE=BC.同理可得FG∥BC,FG=BC,DE∥是平行四边形,AD=BC,AD∥BC.∠ABC+∠BAD=课前预习:1.互相平分COD02.底×高△ABE和△FCE中,∠BEA=∠CEF,∴△ABE≌△FCE FG,DE=FG..四边形DEFG是平行四边形..EF∥DG,180°.AF∥BE,.∠EBA+∠BAF=180°..∠CBE=BE=CE.∠DAF.同理得∠BCE=∠ADF.在△BCE和△ADF中当堂训练:1.D2.B3.D4.4√135.16EF=DG.I∠CBE=∠DAF,6.证明:□ABCD的对角线AC,BD相交于点O,AO=(AAS.AE=EF.又CE=BE,∴四边形ABFC是平行四课后作业:l.B2.C3.C4.B5.B边形,6.12cm6cm27.证明:连接BD交ACBC=AD.CO,AD∥BC.∴.∠EAO=∠FCO.在△AOE和△COF中,∴.△BCE≌△ADF(ASA)课后作业:1.C2.D3.C4.125.平行四边形6.证于点O.:四边形ABCD是平行四边形∠BCE=∠ADF,明:(1):四边形ABCD是平行四边形,.AB=CD,AB∥CD...AO=CO.BO=DO.AD//BC.AD=BC(2)解:点E在□ABCD内部,.S△E十S△AD八年级数学·RJ·下册·127八年级数学下册18.2.2菱形第1课时菱形的性质课前预习预习斯知6,如图,四边形ABCD是菱形,CE⊥AB交AB1.有叫做菱形,的延长线于点E,CF⊥AD交AD的延长线于因此,菱形特殊的平行四边形,它具有点F.求证:DF=BE.的所有性质。2.菱形(填“是”或“不是”)轴对称图形,它有条对称轴,分别是3.菱形的性质:(1)菱形的(2)菱形的4.菱形的两条对角线把菱形分成四个知识点2菱形的面积三角形,菱形的面积等于7.(雅安)如图,菱形ABCD的面积为120cm,对角线当堂训练础AC=24cm,则菱形ABCD知识点1_菱形的性质的周长为()1.(莆田)菱形具有而一般平行四边形不具有的A.52 cm B.40 cm C.39 cm D.26 cm性质是(8.(贵州)已知一个菱形的边长为2,较长的对角线A.对边相等B.对角相等的长为23,则这个菱形的面积是C.对角线互相平分D.对角线互相垂直9.(安顺)如图,在□ABCD中,BC=2AB=4,E,2.(抚顺)如图,四边形ABCDF分别是BC,AD的中点.是菱形,对角线AC,BD相(1)求证:△ABE≌△CDF;交于点O,AC=8,BD=6,(2)当四边形AECF为菱形时,求该菱形的点E是CD上一点,连接面积.OE.若OE=CE,则OE的长是A.2B.C.3D.43.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E.若∠ADC130°,则∠AOE的度数为()》A.75°B.65°C.55D.50(第3题图)(第4题图)4.(广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(一2,0),点D在y轴上,则点C的坐标是5.在菱形ABCD中,∠A=30°.在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为41课后作业7,如图,四边形ABCD是菱形,对角线AC,BD全面找升1,已知菱形ABCD的对角线AC=8cm,BD=相交于点O,DH⊥AB于点H,连接OH.6cm,则AC与BD的交点到任意一边的距离求证:∠DHO=∠DCO.为A.5 cmB.2.5 cmC.2.4 cmD.1.2 cm2.(宿迁)如图,菱形ABCD的对角线AC,BD相交于点O,点E为边CD的中点.若菱形ABCD的周长为16,,∠BAD=60°,则△OCE的面积是A.√3B.2C.2√3D.43.(白银)如图,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影部分和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为超越自我8.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于点E,OF⊥AD于点F.(1)对角线AC的长是,菱形ABCD的(第3题图)(第4题图)面积是4.(哈尔滨)如图,在菱形ABCD中,对角线AC,(2)当点O在对角线BD上运动时,OE+OFBD相交于点O,点E在线段BO上,连接的值是否会发生变化?请说明理由.AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为5.在菱形ABCD中,边长AB=6,∠A=60°.若2点P是菱形内一点,且PB=PD=2√3,则AP的长是46.如图,在菱形ABCD中,F是AB上一点,DF交AC于点E.求证:∠AFD=∠CBE.42 展开更多...... 收起↑ 资源列表 【同步培优-学案】18.2.2 菱形.pdf 【同步培优-学案】第18章 参考答案(全).pdf