资源简介 (共26张PPT)19.2.1正比例函数的概念人教版八年级下册情境引入学习目标1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点)正比例函数的概念一问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体温度T(单位:℃)随冷冻时间t(单位:min)的变化而变化.(3)h=0.5n(4)T=-2t问题2 认真观察以上出现的四个函数解析式,分别说出哪些是函数、常量和自变量.函数解析式 函数 常量 自变量l =2πrm =7.8Vh = 0.5nT = -2t这些函数解析式有什么共同点?这些函数解析式都是常数与自变量的乘积的形式!2,πrl7.8VmhTt0.5-2n函数=常数×自变量ykx=知识要点一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.思考为什么强调k是常数,k≠0呢?y = k x (k≠0的常数)比例系数自变量正比例函数一般形式注: 正比例函数y=kx(k≠0)的结构特征①k≠0②x的次数是11.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?是,3不是是,π不是是,是,试一试2.回答下列问题:(1)若y=(m-1)x是正比例函数,m取值范围是 ;(2)当n 时,y=2xn是正比例函数;(3)当k 时,y=3x+k是正比例函数.试一试m≠1=1=0∴ m-1≠0,m2=1,函数是正比例函数函数解析式可转化为y=kx(k是常数,k ≠0)的形式.即 m≠1,m=±1,∴ m=-1.解:∵函数 是正比例函数,例1 已知函数 y=(m-1) 是正比例函数,求m的值.典例精析变式训练(1)若 是正比例函数,则m= ;(2)若 是正比例函数,则m= ;-2-1m-2≠0,|m|-1=1,∴ m=-2.m-1≠0,m2-1=0,∴ m=-1.解:(1)设正比例函数解析式是 y=kx,把 x =-4, y =2 代入上式,得2 = -4k,∴所求的正比例函数解析式是 y= - ;2x解得 k= - ,21(2)当 x=6 时, y = -3.例2 若正比例函数的自变量x等于-4时,函数y的值等于2. (1)求正比例函数的解析式; (2)求当x=6时函数y的值.设代求写待定系数法做一做已知y与x成正比例,当x等于3时,y等于-1.则当x=6时,y的值为 .-2问题3 2021年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?正比例函数的简单应用二(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥站,约需要多少小时(结果保留小数点后一位)?1318÷300≈4.4(小时)(2)京沪高铁列车的行程y(单位:千米)与运行时间t(单位:时)之间有何数量关系?y=300t(0≤t≤4.4)(3)京沪高铁列车从北京南站出发2.5小时后,是否已经过了距始发站1 100 千米的南京站?y=300×2.5=750(千米), 这时列车尚未 到 达 距 始 发 站 1 100千米的南京站.例3 已知某种小汽车的耗油量是每100km耗油15L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间的函数关系式,并指出y是x的什么函数;(2)计算该汽车行驶220 km所需油费是多少?即 .解:(1)y=5×15x÷100,(2)当x=220时,答:该汽车行驶220 km所需油费是165元..y是x的正比例函数.列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数.(1)正方形的边长为xcm,周长为ycm.y=4x 是正比例函数(2)某人一年内的月平均收入为x元,他这年(12个月)的总收入为y元.y=12x 是正比例函数(3)一个长方体的长为2cm,宽为1.5cm,高为xcm ,体积为ycm3.y=3x 是正比例函数做一做1.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1” )一定,工作效率w与工作时间t当堂练习B2.下列说法正确的打“√”,错误的打“×”.(1)若y=kx,则y是x的正比例函数( )(2)若y=2x2,则y是x的正比例函数( )(3)若y=2(x-1)+2,则y是x的正比例函数( )(4)若y=(2+k2)x,则y是x的正比例函数( )××√注意:(1)中k可能为0;(4)中2+k2>0,故y是x的正比例函数.√3.填空(1)如果y=(k-1)x是y关于x的正比例函数,则k满足_______.(2)如果y=kxk-1,是y关于x的正比例函数,则k=____.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_____.k≠124(4)若 是关于x的正比例函数,m= .-24.已知y-3与x成正比例,并且x=4时,y=7,求y与x之间的函数关系式.解:依题意,设y-3与x之间的函数关系式为y-3=kx,∵x=4时,y=7,∴7-3=4k,解得k=1.∴y-3=x,即y=x+3.5.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y(单位:公顷)与收割时间x(单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.解:(1)y=0.5x;(2)把y=10代入y=0.5x中,得10=0.5x.解得x=20,即收割完这块麦田需要20小时.课堂小结正比例函数的概念形式:y=kx(k≠0)求正比例函数的解析式利用正比例函数解决简单的实际问题1.设2.代3.求4.写谢谢21世纪教育网(www.21cnjy.com)中小学教育资源网站兼职招聘:https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台2022—2023学年度下学期八年级数学教学案 第6 周 第2节课题 19.2.1 第1课时 正比例函数的概念教学目标 知识与技能:理解正比例函数的概念,会求正比例函数的解析式,能利用正比例函数解决简单的实际问题。过程与方法:情感态度与价值观:重点 会求正比例函数的解析式,能利用正比例函数解决简单的实际问题难点 会求正比例函数的解析式,能利用正比例函数解决简单的实际问题教具 多媒体、教学案教与学的过程 教与学的过程教与学的过程 教 与 学 的 内 容正比例函数的概念问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体温度T(单位:℃)随冷冻时间t(单位:min)的变化而变化.问题2 认真观察以上出现的四个函数解析式,分别说出哪些是函数、常量和自变量.知识要点: 一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.注: 正比例函数y=kx(k≠0)的结构特征①k≠0;②x的次数是1 试一试1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少? 2.回答下列问题:(1)若y=(m-1)x是正比例函数,m取值范围是 ;(2)当n 时,y=2xn是正比例函数; (3)当k 时,y=3x+k是正比例函数.例1 已知函数 是正比例函数,求m的值. 变式训练(1)若是正比例函数,则m= ;(2)若 是正比例函数,则m= ;例2 :若正比例函数的自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.做一做已知y与x成正比例,当x等于3时,y等于-1.则当x=6时,y的值为 .正比例函数的简单应用问题3 2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?例3 已知某种小汽车的耗油量是每100km耗油15L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间的函数关系式,并指出y是x的什么函数;(2)计算该汽车行驶220 km所需油费是多少? 做一做列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数.(1)正方形的边长为xcm,周长为ycm.(2)某人一年内的月平均收入为x元,他这年(12个月)的总收入为y元.(3)一个长方体的长为2cm,宽为1.5cm,高为xcm ,体积为ycm3.当堂练习 1.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1” )一定,工作效率w与工作时间t2.下列说法正确的打“√”,错误的打“×”. (1)若y=kx,则y是x的正比例函数( )(2)若y=2x2,则y是x的正比例函数( )(3)若y=2(x-1)+2,则y是x的正比例函数( ) (4)若y=(2+k2)x,则y是x的正比例函数( ) 3.填空(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足_______. (2)如果y=kxk-1,是y关于x的正比例函数,则k=____.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_____. (4)若是关于x的正比例函数,m= . 4.已知y-3与x成正比例,并且x=4时,y=7,求y与x之间的函数关系式.5.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y(单位:公顷)与收割时间x(单位:时)之间的函数关系式; (2)求收割完这块麦田需用的时间.课后小结HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 19.2.1 第1课时 正比例函数的概念.doc 19.2.1 第1课时 正比例函数的概念.ppt