资源简介 2022-2023学年湖北省武汉市江夏区八年级(上)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分)1.(3分)使分式有意义的x的取值范围是( )A.x≠0 B.x≠1 C.x≠﹣2 D.x≠﹣12.(3分)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是( )A.清华大学 B.北京大学C.中国人民大学 D.浙江大学3.(3分)利用平方差公式计算(3a﹣2)(﹣3a﹣2)的结果是( )A.4﹣9a2 B.9a2﹣4 C.9a2﹣2 D.9a2+44.(3分)把多项式8a3b2+12ab3c因式分解时,应提取的公因式是( )A.4ab B.4ab2c C.4ab2 D.8ab25.(3分)下列各式中,正确的是( )A.= B.=C.= D.=﹣6.(3分)一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A.3 B.4 C.5 D.67.(3分)如图,将一张长方形纸片按如图方式折叠,BD、BE为折痕,若∠ABE=30°,则∠DBC的度数为( )A.45° B.60° C.75° D.90°8.(3分)一列数a1,a2,a3,…,其中a1=,an=(n为不小于2的整数),则a4的值为( )A. B. C. D.9.(3分)如图所示,已知Rt△ABC中,∠ABC=90°,以AC为边作△ACD,使AD=AC,E是BC边上一点,连接AE,∠CAD=2∠BAE,连接DE.下列四个结论:①∠ADE=∠ACB;②AC⊥DE;③AE平分∠BED;④DE=CE+2BE.其中正确的个数是( )A.1 B.2 C.3 D.410.(3分)如图,在△ABC中,点M,N分别是AC,BC上一点,AM=BN,∠C=60°,若AB=9,BM=7,则MN的长度可以是( )A.2 B.7 C.16 D.17二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)计算:①(﹣3)0= ;②a3 a4= ;③因式分解(﹣2x)2﹣1= .12.(3分)在平面直角坐标系中,P(1,﹣2)关于y轴对称点的坐标是 .13.(3分)若x2+mx+36是完全平方式,则m的值为 .14.(3分)若a﹣b=﹣7,则a2﹣b2+14b的值是 .15.(3分)如图,△ABC的∠BAC和∠BCA的外角角平分线交于点O,若AB=OC﹣AC,∠OCA=x°,其中60°<x<90°,则∠OAC的度数是 °.(用含x的式子表示)16.(3分)如图所示,在坐标平面中,A(0,4),C为x轴负半轴上一点,CO=3,AC=5,若点P为y轴上一动点,以PC为腰作等腰三角形△PCQ,已知∠CPQ=2∠ACO=2α(α为定值),连接OQ,则OQ的最小值为 .三、解答题(本大题有8题,共72分)17.(8分)计算:(1)5ab(2a﹣b+0.2).(2).18.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E.F,AE=CF.求证:DE=BF.19.(8分)先化简,求值:若x满足方程,求代数式的值.21.(9分)如图是一个14×7的长方形网格,每个小正方形的边长为1,小正方形的顶点叫做格点,一条线段DE和一个三角形ABC的顶点都在格点上.(1)直接写出S△ABC= ;(2)请利用平移或全等三角形的相关知识,仅用无刻度直尺完成下列画图(不写画法,保留画图痕迹);①请画出格点△ABC的边AC上的高..和中线BH;②在线段DE右侧找一个格点F,画出格点△DEF使它与以A、B、C为顶点的三角形全等;③在所作的格点△DEF的边DE上找一点Q,再连接FQ,使∠DFQ=45°.22.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?23.(10分)已知AD是△ABC的边BC上的高,AE平分∠BAD交BC于点E,∠C=∠B+∠BAD.(1)如图1,求证:AE=AC;(2)如图2,点F是AB的中点,过点A作AG∥BC交CF的延长线于点G.①求证:AG=BE+2DE;②如图3,连接EG交AB于H,若AD=AH,求∠B的度数.24.(10分)如图,已知A(a,b),AB⊥y轴于B,且满足2a2﹣2ab+b2﹣6a+9=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1,试判断线段AC和DC的数量关系和位置关系,并说明理由;(3)如图2,若P为y轴上异于原点O和点B的一个动点,连接PA,过P点作PE⊥PA,且PE=PA,连接AE,射线EO交AB延长线于Q,当P点在y轴上移动时,线段AQ的值是否发生变化.若不变化,求出AQ的值;若变化,请说明理由.2022-2023学年湖北省武汉市江夏区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分)1.(3分)使分式有意义的x的取值范围是( )A.x≠0 B.x≠1 C.x≠﹣2 D.x≠﹣1【分析】根据分式有意义的条件:分母不等于0即可求解.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故选:C.2.(3分)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是( )A.清华大学 B.北京大学C.中国人民大学 D.浙江大学【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.3.(3分)利用平方差公式计算(3a﹣2)(﹣3a﹣2)的结果是( )A.4﹣9a2 B.9a2﹣4 C.9a2﹣2 D.9a2+4【分析】原式利用平方差公式计算即可求出值.【解答】解:原式=4﹣9a2,故选:A.4.(3分)把多项式8a3b2+12ab3c因式分解时,应提取的公因式是( )A.4ab B.4ab2c C.4ab2 D.8ab2【分析】直接利用公因式的确定方法找出公因式进而得出答案.【解答】解:8a3b2+12ab3c=4ab2(2a2+3bc),故选:C.5.(3分)下列各式中,正确的是( )A.= B.=C.= D.=﹣【分析】根据分式的基本性质即可求出答案.【解答】解:A、原式==,故A符合题意.B、≠,故B不符合题意.C、≠,故C不符合题意.D、原式=,故 D不符合题意.故选:A.6.(3分)一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A.3 B.4 C.5 D.6【分析】根据多边形的内角和公式(n﹣2) 180°与外角和定理列出方程求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2) 180°=2×360°,解得n=6.故选:D.7.(3分)如图,将一张长方形纸片按如图方式折叠,BD、BE为折痕,若∠ABE=30°,则∠DBC的度数为( )A.45° B.60° C.75° D.90°【分析】根据折叠得到∠ABE=∠A′BE,∠CBD=∠C′BD,推出,即可求出答案.【解答】解:∵一张长方形纸片沿BD、BE折叠,∴∠ABE=∠A′BE,∠CBD=∠C′BD,且∠ABE+∠A′BE+∠CBD+∠C′BD=180°,∴,∵∠ABE=30°,∴∠CBD=60°.故选:B.8.(3分)一列数a1,a2,a3,…,其中a1=,an=(n为不小于2的整数),则a4的值为( )A. B. C. D.【分析】将a1=代入an=得到a2的值,将a2的值代入,an=得到a3的值,将a3的值代入,an=得到a4的值.【解答】解:将a1=代入an=得到a2==,将a2=代入an=得到a3==,将a3=代入an=得到a4==.故选:A.9.(3分)如图所示,已知Rt△ABC中,∠ABC=90°,以AC为边作△ACD,使AD=AC,E是BC边上一点,连接AE,∠CAD=2∠BAE,连接DE.下列四个结论:①∠ADE=∠ACB;②AC⊥DE;③AE平分∠BED;④DE=CE+2BE.其中正确的个数是( )A.1 B.2 C.3 D.4【分析】如图,延长EB至G,使BE=BG,从而构造条件,得到△GAC≌△EAD,通过全等或线段的等量代换运算对结论进行判别,从而得到答案.【解答】解:如图,延长EB至G,使BE=BG,设AC与DE交于点M,∵∠ABC=90°,∴AB⊥BG,∴AB垂直平分GE,∴AG=AE,∴,∵∠CAD=2∠BAE,即,∴∠GAE=∠CAD,∴∠GAE+∠EAC=∠CAD+∠EAC,∴∠GAC=∠EAD,在△GAC和△EAD中,,∴△GAC≌△EAD(SAS),∴∠G=∠AED,∠ACB=∠ADE,故结论①正确;∵AG=AE,∴∠G=∠AEB,∴∠AEB=∠AED,AE平分∠BED,故结论③正确;∵∠ACB=90°,在△BAE和△MAE中,当∠BAE=∠MAE时,∠EBA=∠EMA=90°,则AC⊥DE,当∠BAE≠∠MAE时,则无法说明AC与DE垂直,故结论②错误;∵△GAC≌△EAD,∴CG=DE,∵CG=CE+GE=CE+2BE,∴DE=CE+2BE,故结论④正确.综上所述,其中正确的有①③④.故选:C.10.(3分)如图,在△ABC中,点M,N分别是AC,BC上一点,AM=BN,∠C=60°,若AB=9,BM=7,则MN的长度可以是( )A.2 B.7 C.16 D.17【分析】通过构造等边△ABQ和等边△MBP,得到△QBP≌△ABM (SAS),再证明△QMP≌△NMB (SAS),即可将线段AB、BM和MN集中到同一△QMB中,根据三角形三边关系即可判断MN的长度取值范围.【解答】解:如图,作等边△ABQ和等边△MBP,连接QP,QM,在等边△ABQ和等边△MBP中,∠QBA=∠PBM=60°,∴∠QBP+∠QBM=∠QBM+∠ABM=60°,∴∠QBP=∠ABM,又∵QB=AB=9,PB=MB=7,∴△QBP≌△ABM(SAS),∴∠BQP=∠BAM,PQ=AM,∵AM=BN,在△ABC中,∠ACB+∠CAB+∠CBA=180°,∠ACB=60°,∴∠MBC=180°﹣60°﹣∠MAB﹣∠ABM=120°﹣∠MAB﹣∠ABM,在△QBP中,∠QPB+∠BQP+∠QBP=180°,∠MPB=60°,∴∠MPQ=180°﹣60°﹣∠BQP﹣∠QBP=120°﹣∠MAB﹣∠ABM,∴∠MBN=MPQ,在△QMP和△NMB中,,∴△QMP≌△NMB(SAS),∴MQ=MN,在△QMB中,QB﹣MB<QM<QB+MB,∴AB﹣MB<MN<AB+MB,∴2<MN<16,∴选项B,MN=7符合题意,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)计算:①(﹣3)0= 1 ;②a3 a4= a7 ;③因式分解(﹣2x)2﹣1= (2x+1)(2x﹣1) .【分析】①根据零指数幂即可得出结论;②由同底数幂的乘法,底数不变,指数相加,即可得出结论;③根据平方差公式即可得出结论.【解答】解:①(﹣3)0=1;②a3 a4=a7;③(﹣2x)2﹣1=(2x+1)(2x﹣1).12.(3分)在平面直角坐标系中,P(1,﹣2)关于y轴对称点的坐标是 (﹣1,﹣2) .【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:因为点P(1,﹣2)关于y轴对称,所以纵坐标相等相等,横坐标互为相反数,所以点P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故答案为(﹣1,﹣2).13.(3分)若x2+mx+36是完全平方式,则m的值为 ±12 .【分析】根据多项式x2+mx+16是完全平方式,可得:m=±2×1×6,据此求出m的值是多少即可.【解答】解:∵多项式x2+mx+36是完全平方式,∴m=±2×1×6=±12.故答案为:±12.14.(3分)若a﹣b=﹣7,则a2﹣b2+14b的值是 49 .【分析】根据平方差公式分解因式,将a﹣b=﹣7代入整理即可求出答案.【解答】解:∵a﹣b=﹣7,∴a2﹣b2+14b=(a+b)(a﹣b)+14b=﹣7(a+b)+14b=﹣7a﹣7b+14b=﹣7a+7b=﹣7(a﹣b)=﹣7×(﹣7)=49.故答案为:49.15.(3分)如图,△ABC的∠BAC和∠BCA的外角角平分线交于点O,若AB=OC﹣AC,∠OCA=x°,其中60°<x<90°,则∠OAC的度数是 (180﹣) °.(用含x的式子表示)【分析】延长CA至E,使AE=AB,连接BO,EO,由等腰三角形的性质可得∠E==90°﹣,由“SAS”可证△EAO≌△BAO,可得∠E=∠ABO=90°﹣,由角平分线的性质和外角的性质可求解.【解答】解:如图,延长CA至E,使AE=AB,连接BO,EO,∵AB=OC﹣AC,∴AB+AC=OC=AE+AC,∴EC=OC,∵AO平分∠NAC,∴∠NAO=∠OAC,∵∠BAC=∠EAN,∴∠EAO=∠BAO,在△EAO和△BAO中,,∴△EAO≌△BAO(SAS),∴∠E=∠ABO=90°﹣,∵△ABC的∠BAC和∠BCA的外角角平分线交于点O,∴OB平分∠ABC,∴∠ABC=180°﹣x°,∵∠NAC=∠ABC+∠ACB,∴∠NAC=180°﹣x°+180°﹣2x°=360°﹣3x°,∴∠OAC=180°﹣,故答案为:(180﹣).16.(3分)如图所示,在坐标平面中,A(0,4),C为x轴负半轴上一点,CO=3,AC=5,若点P为y轴上一动点,以PC为腰作等腰三角形△PCQ,已知∠CPQ=2∠ACO=2α(α为定值),连接OQ,则OQ的最小值为 .【分析】延长AC至点M,连接PM,使PM=AP,证出∠CPM=∠APQ,进而证明△CPM≌△QPA( SAS),得到∠PAQ=∠M=∠CAO,求出OC=ON,当OQ⊥AN时,OQ有最小值,利用S△AON=S△AOC,求出OQ的最小值.【解答】解:延长AC至点M,连接PM,使PM=AP,∵∠ACO=α,∴∠M=∠CAO=90°﹣α,∴∠APQ=180°﹣2α,∴∠APM=2α=∠CPQ,∴∠CPM=∠APQ,又∵CP=PQ,PM=PA,∴△CPM≌△QPA( SAS),∴∠PAQ=∠M=∠CAO,∴OC=ON,∴当OQ⊥AN时,OQ有最小值,∵S△AON=S△AOC,∴,∴3×4=5OQ,解得,∴OQ的最小值是,故答案为:.三、解答题(本大题有8题,共72分)17.(8分)计算:(1)5ab(2a﹣b+0.2).(2).【分析】(1)利用单项式乘多项式法则进行计算;(2)利用分式运算法则对式子进行计算.【解答】解:(1)原式=10a2b﹣5ab2+ab.(2)原式====.18.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E.F,AE=CF.求证:DE=BF.【分析】先由AE=CF根据等式的性质就可以得出AF=CE,再由条件证明△ABF≌△CDE就可以得出结论.【解答】证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE.∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴DE=BF.19.(8分)先化简,求值:若x满足方程,求代数式的值.【分析】解分式方程,得到x的值,然后利用平方差、完全平方差公式以及整式混合运算法则对代数式进行化简,代入求值即可.【解答】解:∵,去分母得:x﹣2=2,解得x=4,经检验x=4是分式方程得解,又∵====当x=4时,原式=.21.(9分)如图是一个14×7的长方形网格,每个小正方形的边长为1,小正方形的顶点叫做格点,一条线段DE和一个三角形ABC的顶点都在格点上.(1)直接写出S△ABC= 8 ;(2)请利用平移或全等三角形的相关知识,仅用无刻度直尺完成下列画图(不写画法,保留画图痕迹);①请画出格点△ABC的边AC上的高..和中线BH;②在线段DE右侧找一个格点F,画出格点△DEF使它与以A、B、C为顶点的三角形全等;③在所作的格点△DEF的边DE上找一点Q,再连接FQ,使∠DFQ=45°.【分析】(1)利用分割法求解即可;(2)①取格点R,连接BR,交AC于点P,则BP为所求作的高;取格点H,连接BH即可;②利用数形结合的思想,作出EF=AC,DF=BC即可;③取格点M,作射线FM交DE于点Q即可.【解答】解:(1),故答案为:8.(2)①取格点R,连接BR,交AC于点P,则BP为所求作的高;取格点H,连接BH,则BH为所求作的中线,如图所示:②取格点F,连接DF,EF,则△DEF为所求作的三角形,如图所示:③取格点M,连接DM,FM,DE与FM交于一点Q,则Q点为所求作的点,如图所示:∵DM⊥DF,∴∠MDF=90°,∵DM=DF,∴,即∠DFQ=45°.22.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售20件.23.(10分)已知AD是△ABC的边BC上的高,AE平分∠BAD交BC于点E,∠C=∠B+∠BAD.(1)如图1,求证:AE=AC;(2)如图2,点F是AB的中点,过点A作AG∥BC交CF的延长线于点G.①求证:AG=BE+2DE;②如图3,连接EG交AB于H,若AD=AH,求∠B的度数.【分析】(1)根据AE平分∠BAD,,证明∠AED=∠C,即可得出结论;(2)①根据点F是AB的中点,则AF=BF,证明△AFG≌△BFC,进而求出结论;②由题意可以证得△AHE≌△ADE,△AEG≌△CAB,最后求出∠B的度数.【解答】(1)证明:∵AE平分∠BAD,∴,∵∠AED为△ABE外角,∴,∵,∴∠AED=∠C,∴△AEC是等腰三角形,∴AE=AC;(2)解:①∵点F是AB的中点,∴AF=BF,∵AG∥BC,∴∠GAF=∠B,在△AFG和△BFC中,∵,∴△AFG≌△BFC(AAS),∴AG=BC,由(1)知:AE=AC,又AD⊥CE,∴,∴AG=BC=BE+CE=BE+2CD;②在△AHE和△ADE中,∵,∴△AHE≌△ADE(SAS),∴∠AHE=∠ADE=90°∴∠AHG=90°∴∠GAF+∠AGH=90°,∵,,∴∠ACB=∠GAF+∠BAE=∠GAE,∠B+∠AGH=90°,由(1)知:AE=AC,在△AEG和△CAB中,∵,∴△AEG≌△CAB(SAS),∴∠AGE=∠B,∴2∠B=90°,∴∠B=45°,故∠B的度数为45°.24.(10分)如图,已知A(a,b),AB⊥y轴于B,且满足2a2﹣2ab+b2﹣6a+9=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1,试判断线段AC和DC的数量关系和位置关系,并说明理由;(3)如图2,若P为y轴上异于原点O和点B的一个动点,连接PA,过P点作PE⊥PA,且PE=PA,连接AE,射线EO交AB延长线于Q,当P点在y轴上移动时,线段AQ的值是否发生变化.若不变化,求出AQ的值;若变化,请说明理由.【分析】(1)利用非负数的性质求出a,b的值,可得结论;(2)结论:AC=CD,AC⊥CD.证明△BAO≌△CAD(SAS),推出BO=CD,∠ABO=∠ACD,可得结论;(3)结论:AQ是定值=6.如图2中,过点E作ET⊥y轴于点T,在TE上截取TK=PT,连接PK.证明△AOP≌△PKE(AAS),推出OP=PE,可得结论.【解答】解:(1)∵2a2﹣2ab+b2﹣6a+9=0,∴(a﹣b)2+(a﹣3)2=0,∵(a﹣b)2≥0,(a﹣3)2≥0,∴a=b=3,∴A(3,3);(2)结论:AC=CD,AC⊥CD.理由:∵△ABC,△AOD都是等边三角形,∴∠BAC=∠OAD=60°,AB=AC,AO=AD,∴∠BAO=∠CAD,在△BAO和△CAD中,,∴△BAO≌△CAD(SAS),∴BO=CD,∠ABO=∠ACD,∵AB⊥y轴,∴∠ABO=∠ACD=90°,∵AB=OB=3,∵AB=AC,∴AC=CD,AC⊥CD;(3)结论:AQ是定值=6.理由:如图2中,过点E作ET⊥y轴于点T,在TE上截取TK=PT,连接PK.∵AB=BO,TP=TK,∠ABO=∠PTK=90°,∴∠AOB=∠PKT=45°,∴∠AOT=∠PKE=135°,∵∠APE=90°,∠TPK=45°,∴∠OPA+∠EPK=45°,∵∠OPA+∠OAP=45°,∴∠OAP=∠EPK,∵PA=PE,∴△AOP≌△PKE(AAS),∴OP=PE,∵TP=TK,∴OT=ET,∴∠TOE=∠QOB=45°,∴∠Q=∠OAB=45°,∴OQ=OA,∵OB⊥AQ,∴AB=BQ=3,∴AQ=6. 展开更多...... 收起↑ 资源预览