资源简介 中小学教育资源及组卷应用平台2023年数学中考十八个亮点微专题与必考的十二类大题解法再深化专题04 勾股定理及其实际应用1. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).【答案】m2-1【解析】2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.∵2m为偶数,∴设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,故答案为:m2-1.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.2. 已知矩形的一边长为,一条对角线的长为,则矩形的面积为_________.【答案】48【解析】如图,先根据勾股定理求出,再由求解即可.在矩形ABCD中,,,∴在中,(cm),∴.故答案为:48.【点睛】此题考查了矩形的性质,勾股定理,解题的关键是熟知上述知识.3.如图,已知⊙O的半径为1,点P是⊙O外一点,T为切点,连结OT .【答案】PT═.【解析】根据圆的切线性质可得出△OPT为直角三角形,再利用勾股定理求得PT长度.∵PT是⊙O的切线,T为切点,∴OT⊥PT,在Rt△OPT中,OT═1,∴PT═══,故:PT═.4.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,AC=8,BD=6,OE= .【答案】.【解析】根据菱形的性质和勾股定理,可以求得AD的长,然后根据等面积法即可求得OE的长.解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,∵AC=8,BD=6,∴AO=4,DO=3,∴AD===5,又∵OE⊥AD,∴,∴,解得OE=,故答案为:.5. 小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A. (600-250)米 B. (600-250)米C. (350+350)米 D. 500米【答案】B【解析】如答图,∵BE:AE=5:12,∴可设BE=5k,AE=12k,∵AB=1300米,∴在Rt△ABE中,由勾股定理,得AE2+BE2=AB2,即,解得k=100.∴AE=1200米,BE=500米.设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.∴1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750.∴CD=DF+CF=600﹣250(米).∴山高CD为(600﹣250)米.故选B.【点睛】本题考查解直角三角形的应用(仰角俯角和坡度坡角问题);勾股定理;锐角三角函数定义;特殊角的三角函数值;待定系数法的应用.6.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为( )A.25m B.24m C.30m D.60m【答案】A【解析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m【点拨】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.7.设边长为的等边三角形的高、内切圆的半径、外接圆的半径分别为、、,则下列结论不正确的是( )A. B. C. D.【答案】C【解析】将图形标记各点,即可从图中看出长度关系证明A正确,再由构造的直角三角形和30°特殊角证明B正确,利用勾股定理求出r和R,即可判断C、D.如图所示,标上各点,AO为R,OB为r,AB为h,从图象可以得出AB=AO+OB,即,A正确;∵三角形为等边三角形,∴∠CAO=30°,根据垂径定理可知∠ACO=90°,∴AO=2OC,即R=2r,B正确;在Rt△ACO中,利用勾股定理可得:AO2=AC2+OC2,即,由B中关系可得:,解得,则,所以C错误,D正确;故选:C.【点睛】本题考查圆与正三角形的性质结合,关键在于巧妙利用半径和构建直角三角形.8.如图,在半径为3的⊙O中,是直径,是弦,是的中点,与交于点.若是的中点,则的长是( )A. B. C. D.【答案】D【解析】连接DO、DA、DC,设DO与AC交于点H,证明△DHE≌△BCE,得到DH=CB,同时OH是三角形ABC中位线,设OH=x,则BC=2x=DH,故半径DO=3x,解出x,最后在Rt△ACB中由勾股定理即可求解.【详解】连接DO、DA、DC、OC,设DO与AC交于点H,如下图所示,∵D是的中点,∴DA=DC,∴D在线段AC的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∴DO⊥AC,∠DHC=90°,∵AB是圆的直径,∴∠BCA=90°,∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,∴△DHE≌△BCE(AAS),∴DH=BC,又O是AB中点,H是AC中点,∴HO是△ABC的中位线,设OH=x,则BC=DH=2x,∴OD=3x=3,∴x=1,即BC=2x=2,在Rt△ABC中,.故选:D.【点睛】本题考查了圆周角定理、三角形全等、勾股定理等,属于综合题,熟练掌握其性质和定理是解决此题的关键9.如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是( )A.4 B.5 C.6 D.2【答案】B【解析】连接PM,设AP=x,可得出PB=7﹣x,BM=7,根据折叠的性质可得CD=PC=7,CM=C′M=2,在Rt△PBM中和Rt△PC′M中,根据勾股定理PB2+BM2=PM2,PM2=(7﹣x)2+72,C′P2+C′M2=PM2,PM2=72+22,因为PM是公共边,所以可得PM=PM,即(7﹣x)2+72=72+22,求出x的值即可得出答案.解:连接PM,如图,设AP=x,∵AB=7,CM=2,∴PB=7﹣x,BM=BC﹣CM=7,由折叠性质可知,CD=PC=7,CM=C′M=2,在Rt△PBM中,PB2+BM2=PM2,PM2=(7﹣x)2+72,在Rt△PC′M中,C′P2+C′M2=PM2,PM2=72+22,∴(7﹣x)2+72=72+22,解得:x=5,∴AP=5.故选:B.10.如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B的坐标是(0,1),且BC=,则点A的坐标是 .【答案】(2,0).【解析】根据菱形性质得OC的长,因而得点C的坐标,根据对称性质可得答案.∵四边形ABCD是菱形,∴∠BOC=90°,OC=OA,∵点B的坐标是(0,1),∴OB=1,在直角三角形BOC中,BC=,∴OC==2,∴点C的坐标(﹣2,0),∵OA与OC关于原点对称,∴点A的坐标(2,0).11.《九章算术》是中国传统数学重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面________尺高.【答案】【解析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.设竹子折断处离地面x尺,则斜边为(10-x)尺,根据勾股定理得:x2+32=(10-x)2,解得:.【点睛】考查勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.12.“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的,其中,AB与BC间另有步道DE相连,D地在AB的正中位置,E地与C地相距1km,若,小张某天沿路线跑一圈,则他跑了_______km.【答案】24【解析】过点作,设,则,,在中,根据勾股定理得到,进一步求得,再根据三角函数可求,可得,,,从而求解.【详解】解:过点作,设,∵,∴,,在中,,,地在正中位置,,又∵,,∴,∴,小张某天沿路线跑一圈,他跑了.故答案为:24.【点睛】此题考查了解直角三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.13.如图,矩形中,,,点在对角线上,且,连接并延长,交的延长线于点,连接,则的长为_______.【答案】【解析】由矩形的性质求得BD,进而求得PD ,再由AB∥CD得,求得CQ,然后由勾股定理解得BQ即可.∵四边形ABCD是矩形,,,∴∠BAD=∠BCD=90 ,AB=CD=5,BC=AD=12,AB∥CD,∴,又=5,∴PD=8,∵AB∥DQ,∴,即解得:CQ=3,在Rt△BCQ中,BC=12,CQ=3,.故答案为:【点睛】本题考查了矩形的性质、平行线分线段成比例定理、勾股定理,熟练掌握矩形的性质,会利用平行线成比例定理列相关比例式是解答的关键.14.平面直角坐标系中,点P(﹣3,4)到原点的距离是 .【答案】5【解析】作PA⊥x轴于A,则PA=4,OA=3,再根据勾股定理求解.作PA⊥x轴于A,则PA=4,OA=3.则根据勾股定理,得OP=5.【点评】此题考查了点的坐标的知识以及勾股定理的运用.点到x轴的距离即为点的纵坐标的绝对值.15.(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;(3)拓展探究如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).【答案】见解析。【解析】(1)由题意得4△ADE的面积+正方形EFGH的面积=正方形ABCD是面积,即4×ab+(b﹣a)2=c2,整理即可;(2)设EF=a,FD=b,则a+b=12①,再由题意得E'F'=EF,KF'=FD,E'K=BC=5,则a﹣b=5②,由①②求出a=即可;(3)设正方形E的边长为e,正方形F的边长为f,证△PMQ∽△D'OE'∽△B'C'A',得=,=,则e2=cn,f2=bn,再由勾股定理得:e2+f2=n2,则cn+bn=n2,即可得出结论.解:(1)a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方),证明如下:∵如图①是由直角边长分别为a,b的四个全等的直角三角形与中间一个边长为(b﹣a)的小正方形拼成的一个边长为c的大正方形,∴4△ADE的面积+正方形EFGH的面积=正方形ABCD是面积,即4×ab+(b﹣a)2=c2,整理得:a2+b2=c2;(2)由题意得:正方形ACDE被分成4个全等的四边形,设EF=a,FD=b,∴a+b=12①,∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,∴E'F'=EF,KF'=FD,E'K=BC=5,∵E'F'﹣KF'=E'K,∴a﹣b=5②,由①②得:,解得:a=,∴EF=;(3)c+b=n,理由如下:如图③所示:设正方形E的边长为e,正方形F的边长为f,∵∠1=∠2=∠3=α,∠PMQ=∠D'OE'=∠B'C'A'=90°,∴△PMQ∽△D'OE'∽△B'C'A',∴=,=,即=,=,∴e2=cn,f2=bn,在Rt△A'B'C'中,由勾股定理得:e2+f2=n2,∴cn+bn=n2,∴c+b=n.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台2023年数学中考十八个亮点微专题与必考的十二类大题解法再深化专题04 勾股定理及其实际应用1. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).2. 已知矩形的一边长为,一条对角线的长为,则矩形的面积为_________.3.如图,已知⊙O的半径为1,点P是⊙O外一点,T为切点,连结OT .4.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,AC=8,BD=6,OE= .5. 小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A. (600-250)米 B. (600-250)米C. (350+350)米 D. 500米6.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为( )A.25m B.24m C.30m D.60m7.设边长为的等边三角形的高、内切圆的半径、外接圆的半径分别为、、,则下列结论不正确的是( )A. B. C. D.8.如图,在半径为3的⊙O中,是直径,是弦,是的中点,与交于点.若是的中点,则的长是( )A. B. C. D.9.如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是( )A.4 B.5 C.6 D.210.如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B的坐标是(0,1),且BC=,则点A的坐标是 .11.《九章算术》是中国传统数学重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面________尺高.12.“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的,其中,AB与BC间另有步道DE相连,D地在AB的正中位置,E地与C地相距1km,若,小张某天沿路线跑一圈,则他跑了_______km.13.如图,矩形中,,,点在对角线上,且,连接并延长,交的延长线于点,连接,则的长为_______.14.平面直角坐标系中,点P(﹣3,4)到原点的距离是 .15.(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;(3)拓展探究如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 专题04 勾股定理及其实际应用(原卷版) .doc 专题04 勾股定理及其实际应用(解析版) .doc