九年级数学上册第一章 特殊的平行四边形 专题训练(含答案)

资源下载
  1. 二一教育资源

九年级数学上册第一章 特殊的平行四边形 专题训练(含答案)

资源简介

九年级数学上册特殊的平行四边形
一、单选题
1.下列命题是真命题的是( )
A.对角线相等的四边形是平行四边形
B.对角线互相平分且相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分的四边形是正方形
2.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为(  )
A.16 B.17
C.18 D.19
3.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为(  )
A.10 B.12 C.16 D.18
4.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是(  )
B.1 C. D.2
5.如图,点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点.下列三种说法:
① .四边形EFGH一定是平行四边形;
②.若AC=BD,则四边形EFGH 是菱形;
③.若AC⊥BD,则四边形EFGH是矩形.
其中正确的是( )
A.① B.①② C.①③ D.①②③
6.如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )
A.当时,四边形ABMP为矩形
B.当时,四边形CDPM为平行四边形
C.当时,
D.当时,或6s
7.如图,点是正方形内一点,,,,则的长为( )
A. B. C. D.
8.如图,在正方形中,,E为对角线上与A,C不重合的一个动点,过点E作于点F,于点G,连接.下列结论:
①;②;③;④的最小值为3.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
9.菱形ABCD的面积为24,对角线AC的长为6,则对角线BD的长为 _____.
10.菱形的边长为2,,点、分别是、上的动点,的最小值为______.
11.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则AM的最小值是______________.
12.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.
13.如图,在矩形ABCD中,AB=8,BC=6,点P为边AB上任意一点,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,则PE+PF=______.
14.已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合)且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个结论:
①△OEF是等腰直角三角形;
②△OEF面积的最小值是;
③至少存在一个△ECF,使得△ECF的周长是;
④四边形OECF的面积是1.
所有正确结论的序号是_________________________
三、解答题
15.如图,在四边形中,AB//DC,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
16.如图,在中,交于点,点在上,.
(1)求证:四边形是平行四边形;
(2)若求证:四边形是菱形.
17.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.
(1)求证:≌;
(2)判定四边形AODF的形状并说明理由.
18.如图,点,分别在正方形的边,上,且,把绕点顺时针旋转得到.
(1)求证:≌.
(2)若,,求正方形的边长.
19.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
20.如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
(1)求证:△ABN≌△MAD;
(2)若AD=2,AN=4,求四边形BCMN的面积.
21.如图,在 ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF
(1)求证: ABCD是菱形;
(2)若AB=5,AC=6,求 ABCD的面积.
22.如图,在中,为边的中点,连接并延长,交的延长线于点,延长至点,使,分别连接,,.
(1)求证:;
(2)当平分时,四边形是什么特殊四边形?请说明理由.
23.如图,线段DE与AF分别为△ABC的中位线与中线.
(1)求证:AF与DE互相平分;
(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.
24.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.
(1)在AC上找一点P,使△BPE的周长最小(作图说明);
(2)求出△BPE周长的最小值.
25.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM
(2)当AE=1时,求EF的长.
26.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是   .
27.如图,点C是的中点,四边形是平行四边形.
(1)求证:四边形是平行四边形;
(2)如果,求证:四边形是矩形.
28.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON.
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
29.如图,菱形ABCD的对角线AC、BD相交于点O,,,OE与AB交于点F.
(1)求证:四边形AEBO为矩形;
(2)若OE=10,AC=16,求菱形ABCD的面积.
30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
31.四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.

(1)如图,求证:矩形是正方形;
(2)若,求的长度;
(3)当线段与正方形的某条边的夹角是30°时,直接写出的度数.
32.如图,平行四边形ABCD的对角线AC、BD相交于点O,AB⊥AC,AB=3,BC=5,点P从点A出发,沿AD以每秒1个单位的速度向终点D运动.连接PO并延长交BC于点Q.设点P的运动时间为t秒.
(1)则CQ的长度为    (用含t的式子表示);
(2)当四边形ABQP是平行四边形时,求t的值;
(3)当点O在线段AP的垂直平分线上时,求t的值.
33.如图,在四边形ABCD中,AB∥CD,∠ADC=90°,AD=12cm,AB=18cm,CD=23cm,动点P从点A出发,以1cm/s的速度向点B运动,同时动点Q从点C出发,以2cm/s的速度向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.
(1)当t=3时,PB=   cm.
(2)当t为何值时,直线PQ把四边形ABCD分成两个部分,且其中的一部分是平行四边形?
(3)四边形PBQD能否成为菱形?若能,求出t的值;若不能,请说明理由.
34.如图所示,在矩形中,cm,cm,点P从A开始沿边以4m/s的速度运动,点Q从C开始沿边以2m/s的速度运动,如果点P,Q分别从A,C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s.
(1)当时,求P,Q两点之间的距离.
(2)当为何值时,线段与互相平分
(3)当为何值时,四边形的面积为矩形面积的.
中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案:
1.B
【分析】A、根据平行四边形的判定定理作出判断;B、根据矩形的判定定理作出判断;C、根据菱形的判定定理作出判断;D、根据正方形的判定定理作出判断.
【详解】解:A、对角线互相平分的四边形是平行四边形;故本选项错误,不符合题意;
B、对角线互相平分且相等的四边形是矩形;故本选项正确,符合题意;
C、对角线互相垂直的平行四边形是菱形;故本选项错误,不符合题意;
D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误,不符合题意;
故选:B.
【点睛】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.
2.B
【分析】由图可得,S1的边长为3,由AC=BC,BC=CE= CD,可得AC=2CD,CD=2,EC=,然后,分别算出S1、S2的面积即可解答.
【详解】解:如图
设正方形S2的边长为x,
根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,
∴AC=2CD,CD==2,
∴EC2=22+22,即EC=;
∴S2的面积为;
∵S1的边长为3,S1的面积为3×3=9,
∴S1+S2=8+9=17.
故选:B.
【点睛】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.
3.C
【分析】首先根据矩形的特点,作PM⊥AD于M,交BC于N,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.
【详解】解:作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN
∴S矩形EBNP= S矩形MPFD ,
又∵S△PBE= S矩形EBNP,S△PFD=S矩形MPFD,
∴S△DFP=S△PBE=×2×8=8,
∴S阴=8+8=16,
故选:C.
【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
4.B
【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.
【详解】解:如图
作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.
∵菱形ABCD关于AC对称,M是AB边上的中点,
∴M′是AD的中点,
又∵N是BC边上的中点,
∴AM′∥BN,AM′=BN,
∴四边形ABNM′是平行四边形,
∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值为1,
故选B.
5.D
【分析】根据三角形中位线定理得到,EH=BD,EF=AC,根据平行四边形、菱形、矩形的判定定理判断即可.
【详解】解:∵点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点,
∴,EH=BD, EF=AC,
∴四边形EHGF是平行四边形,故①符合题意;
若AC=BD,则EF=EH,
∴平行四边形EHGF是菱形,故②符合题意;
若AC⊥BD,则EF⊥EH,
∴平行四边形EHGF是矩形,故③符合题意;
故选:D.
【点睛】本题考查的是中点四边形,掌握三角形中位线定理、平行四边形、菱形、矩形的判定定理是解题的关键.
6.D
【分析】计算AP和BM的长,得到AP≠BM,判断选项A;计算PD和CM的长,得到PD≠CM,判断选项B;按PM=CD,且PM与CD不平行,或PM=CD,且PM∥CD分类讨论判断选项C和D.
【详解】解:由题意得PD=t,AP=AD-PD=10-t,BM=t,CM=8-t,∠A=∠B=90°,
A、当时,AP=10-t=6 cm,BM=4 cm,AP≠BM,则四边形ABMP不是矩形,该选项不符合题意;
B、当时,PD=5 cm,CM=8-5=3 cm,PD≠CM,则四边形CDPM不是平行四边形,该选项不符合题意;
作CE⊥AD于点E,则∠CEA=∠A=∠B=90°,
∴四边形ABCE是矩形,
∴BC=AE=8 cm,
∴DE=2 cm,
当PM=CD,且PM与CD不平行时,作MF⊥AD于点F,CE⊥AD于点E,
∴四边形CEFM是矩形,
∴FM=CE;
∴Rt△PFM≌Rt△DEC(HL),
∴PF=DE=2,EF=CM=8-t,
∴AP=10-4-(8-t)=10-t,
解得t=6 s;
当PM=CD,且PM∥CD时,
∴四边形CDPM是平行四边形,
∴DP=CM,
∴t=8-t,
解得t=4 s;
综上,当PM=CD时,t=4s或6s;选项C不符合题意;选项D符合题意;
故选:D.
【点睛】此题重点考查矩形的判定与性质、全等三角形的判定与性质,解题的关键是正确地作出解题所需要的辅助线,应注意分类讨论,求出所有符合条件的t的值.
7.C
【分析】将绕着点A顺时针旋转90°得到,连接,则是等腰直角三角形,,然后根据勾股定理即可得到结论.
【详解】将绕着点A顺时针旋转90°得到,连接,则是等腰直角三角形

∴,




故选C.
【点睛】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质,和勾股定理,正确的作出辅助线是本题的关键.
8.C
【分析】延长,交于点,交于点,连接,交于点,先根据正方形的性质、三角形全等的判定定理与性质得出,再根据矩形的判定与性质可得,由此可判断①;先根据三角形全等的性质可得,再根据矩形的性质可得,然后根据等腰三角形的性质可得,由此可判断③;根据直角三角形的性质可得,从而可得,由此可判断②;先根据垂线段最短可得当时,取得最小值,再解直角三角形可得的最小值,从而可得的最小值,由此可判断④.
【详解】解:如图,延长,交于点,交于点,连接,交于点,
四边形是正方形,,

在和中,,



四边形是矩形,

,即结论①正确;


,即结论③正确;



,即,结论②正确;
由垂线段最短可知,当时,取得最小值,
此时在中,,
又,
的最小值与的最小值相等,即为,结论④错误;
综上,正确的结论为①②③,共有3个,
故选:C.
【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质、解直角三角形等知识点,通过作辅助线,构造全等三角形和直角三角形是解题关键.
9.8
【分析】根据菱形的面积等于对角线乘积的一半直接计算即可.
【详解】解:菱形ABCD的面积=AC BD=24,
∵AC=6,
∴BD==8,
故答案为:8.
【点睛】本题考查了根据对角线长计算菱形的面积的方法,掌握菱形的面积等于对角线乘积的一半是解题的关键.
10.
【分析】过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,在直角三角形BEC中,勾股定理即可求解.
【详解】解:如图,过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,
菱形的边长为2,,
中,
PQ+QC的最小值为
故答案为:
【点睛】本题考查了菱形的性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题的关键.
11.
【分析】根据题意,AM=EF,利用三个直角的四边形是矩形,得到EF=AP,得AM=AP,当AP最小时,AM有最小值,根据垂线段最短,计算AP的长即可.
【详解】∵∠BAC=90°,AB=3,AC=4,
∴BC==5,
∴BC边上的高h=,
∵∠BAC=90°,PE⊥AB,PF⊥AC,
∴四边形AEPF是矩形,
∴AP=EF,
∵∠BAC=90°,M为EF的中点,
∴AM=EF,
∴AM=AP,
∴当AP最小时,AM有最小值,
根据垂线段最短,当AP为BC上的高时即AP=h时最短,
∴AP的最小值为,
∴AM的最小值为,
故答案为:.
【点睛】本题考查了矩形的判定和性质,直角三角形的性质,勾股定理,垂线段最短原理,熟练掌握矩形的判定和性质,直角三角形的性质是解题的关键.
12.
【分析】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.
【详解】解:∵∠BAC=90°,且BA=6,AC=8,
∴BC==10,
∵DM⊥AB,DN⊥AC,
∴∠DMA=∠DNA=∠BAC=90°,
∴四边形DMAN是矩形,
∴MN=AD,
∴当AD⊥BC时,AD的值最小,
此时,△ABC的面积=AB×AC=BC×AD,
∴AD==,
∴MN的最小值为;
故答案为:.
【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13.
【分析】连接OP.由勾股定理得出AC=10,可求得OA=OB=5,由矩形的性质得出S矩形ABCD=AB BC=48,S△AOB=S矩形ABCD=12,OA=OB=5,由S△AOB=S△AOP+S△BOP=OA PE+OB PF=OA(PE+PF)=×5×(PE+PF)=12求得答案.
【详解】解:连接OP,如图:
∵四边形ABCD是矩形,
∴∠ABC=90°,OA=OC,OB=OD,AC=BD,
∴OA=OB,AC==10,
∴S矩形ABCD=AB BC=48,S△AOB=S矩形ABCD=12,OA=OB=5,
∴S△AOB=S△AOP+S△BOP=OA PE+OB PF=OA(PE+PF)=×5×(PE+PF)=12,
∴PE+PF=;
故答案为:.
【点睛】本题考查了矩形的性质、勾股定理.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
14.①③④
【分析】①易证得△OBE≌△OCF(SAS),则可证得结论①正确;
②由OE的最小值是O到BC的距离,即可求得OE的最小值1,根据三角形面积公式即可判断选项②错误;
③利用勾股定理求得≤EF<2,即可求得选项③正确;
④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.
【详解】解:①∵四边形ABCD是正方形,AC,BD相交于点O,
∴OB=OC,∠OBC=∠OCD=45°,
在△OBE和△OCF中,

∴△OBE≌△OCF(SAS),
∴OE=OF,
∵∠BOE=∠COF,
∴∠EOF=∠BOC=90°,
∴△OEF是等腰直角三角形;
故①正确;
②∵当OE⊥BC时,OE最小,此时OE=OF=BC=1,
∴△OEF面积的最小值是×1×1=,
故②错误;
③∵BE=CF,
∴CE+CF=CE+BE=BC=2,
假设存在一个△ECF,使得△ECF的周长是2+,
则EF=,
由①得△OEF是等腰直角三角形,
∴OE=.
∵OB=,OE的最小值是1,
∴存在一个△ECF,使得△ECF的周长是2+.
故③正确;
④由①知:△OBE≌△OCF,
∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD=×2×2=1,
故④正确;
故答案为:①③④.
【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.
15.(1)证明见解析;(2)OE=2.
【分析】(1)根据一组对边相等的平行四边形是菱形进行判定即可.
(2)根据菱形的性质和勾股定理求出,根据直角三角形斜边的中线等于斜边的一半即可求解.
【详解】(1)证明:∵AB//CD,
∴,
∵平分,
∴,
∴,
∴,
又∵,
∴,
又∵∥,
∴四边形是平行四边形,
又∵,
∴是菱形.
(2)解:∵四边形是菱形,对角线、交于点,
∴,,,
∴,
在Rt△AOB中,,
∴,
∵,
∴,
在Rt△AEC中,,为中点,
∴.
【点睛】本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.
16.(1)见解析
(2)见解析
【分析】(1)先根据四边形ABCD为平行四边形,得出,,再根据,得出,即可证明结论;
(2)先证明,得出,证明四边形ABCD为菱形,得出,即可证明结论.
【详解】(1)证明:∵四边形ABCD为平行四边形,
∴,,
∵,
∴,
即,
∴四边形是平行四边形.
(2)∵四边形ABCD为平行四边形,
∴,
∴,

∴,
∴,
∴四边形ABCD为菱形,
∴,
即,
∵四边形是平行四边形,
∴四边形是菱形.
【点睛】本题主要考查了平行四边形的判定和性质,菱形的判定和性质,平行线的性质,熟练掌握菱形和平行四边形的判定方法,是解题的关键.
17.(1)见解析
(2)四边形AODF为矩形,理由见解析
【分析】(1)利用全等三角形的判定定理即可;
(2)先证明四边形AODF为平行四边形,再结合∠AOD=90°,即可得出结论.
【详解】(1)证明:∵E是AD的中点,
∴AE=DE,
∵DF∥AC,
∴∠OAD=∠ADF,
∵∠AEO=∠DEF,
∴△AOE≌△DFE(ASA);
(2)解:四边形AODF为矩形.
理由:∵△AOE≌△DFE,
∴AO=DF,
∵DF∥AC,
∴四边形AODF为平行四边形,
∵四边形ABCD为菱形,
∴AC⊥BD,
即∠AOD=90°,
∴平行四边形AODF为矩形.
【点睛】本题考查菱形的性质、全等三角形的判定与性质、矩形的判定,熟练掌握全等三角形的判定与性质以及矩形的判定是解题的关键.
18.(1)证明见解析;(2)正方形的边长为6.
【分析】(1)先根据旋转的性质可得,再根据正方形的性质、角的和差可得,然后根据三角形全等的判定定理即可得证;
(2)设正方形的边长为x,从而可得,再根据旋转的性质可得,从而可得,然后根据三角形全等的性质可得,最后在中,利用勾股定理即可得.
【详解】(1)由旋转的性质得:
四边形ABCD是正方形
,即
,即
在和中,

(2)设正方形的边长为x,则
由旋转的性质得:
由(1)已证:
又四边形ABCD是正方形
则在中,,即
解得或(不符题意,舍去)
故正方形的边长为6.
【点睛】本题考查了正方形的性质、旋转的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键.
19.(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析
【分析】(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】解:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=AF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
20.(1)见解析
(2)S四边形BCMN=4-8
【分析】(1)利用矩形的对边平行和四个角都是直角的性质得到两对相等的角,利用AAS证得两三角形全等即可;
(2)利用全等三角形的性质求得AD=BN=2,AN=4,从而利用勾股定理求得AB的长,利用S四边形BCMN=S矩形ABCD-S△ABN-S△MAD求得答案即可.
(1)
证明:在矩形ABCD中,∠D=90°,DC∥AB,
∴∠BAN=∠AMD.
∵BN⊥AM,
∴∠BNA=90°,
在△ABN与△MAD中,

∴△ABN≌△MAD(AAS).
(2)
解:∵△ABN≌△MAD,
∴BN=AD.
∵AD=2,
∴BN=2.
又∵AN=4,
∴在Rt△ABN中,
由勾股定理,得AB=2.
∴S矩形ABCD=2×2=4.
又∵S△ABN=S△MAD=×2×4=4.
∴S四边形BCMN=S矩形ABCD-S△ABN-S△MAD=4-8.
【点睛】本题考查了矩形的性质及全等三角形的判定,了解矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分是解答本题的关键,难度不大.
21.(1)证明见解析;(2)S平行四边形ABCD =24
【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;
(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题.
【详解】(1)∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
∵BE=DF,
∴△AEB≌△AFD,
∴AB=AD,
∴四边形ABCD是菱形;
(2)连接BD交AC于O,
∵四边形ABCD是菱形,AC=6,
∴AC⊥BD,
AO=OC=AC=×6=3,
∵AB=5,AO=3,
∴BO===4,
∴BD=2BO=8,
∴S平行四边形ABCD=×AC×BD=24.
【点睛】本题考查了菱形的判定和性质、勾股定理、全等三角形的判定和性质等知识,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.
22.(1)见解析;(2)矩形,见解析
【分析】(1)利用平行四边形的性质证明,利用中点的性质证明,结合对顶角相等,从而可得结论;
(2)先证明 结合 证明四边形是平行四边形,再利用等腰三角形的性质证明 从而可得结论.
【详解】(1)证明:∵四边形是平行四边形,
∴,∴
又∵为边的中点,

∵,,,

(2)答:四边形是矩形,理由如下:
∵四边形是平行四边形,
∴,
∵,
∴,,
∴,
∵,
∴四边形是平行四边形.
∵平分,
∴.
又∵,
∴,

又∵,
∴,
∴,
∴是矩形
【点睛】本题考查的是三角形全等的判定与性质,平行四边形的性质与判定,矩形的判定,等腰三角形的判定与性质,掌握“有一个角是直角的平行四边形是矩形”是证题的关键.
23.(1)见解析
(2)AF=BC,理由见解析
【分析】(1)易知点D,E,F分别是AB,AC,BC的中点,所以线段DF与EF也为△ABC的中位线,由中位线定理证得四边形ADFE是平行四边形,因为平行四边形的对角线相互平分,此题可证;
(2)根据对角线相等的平行四边形是矩形,结合已知条件可知,当AF=BC时,平行四边形ADFE为矩形.
【详解】(1)证明:∵线段DE与AF分别为△ABC的中位线与中线,
∴D,E,F分别是AB,AC,BC的中点,
∴线段DF与EF也为△ABC的中位线,
∴DFAC,EFAB,
∴四边形ADFE是平行四边形,
∴AF与DE互相平分.
(2)解:当AF=BC时,四边形ADFE为矩形,理由如下:
∵线段DE为△ABC的中位线,
∴DE=BC,
由(1)知四边形ADFE为平行四边形,若ADFE为矩形,则AF=DE,
∴当AF=BC时,四边形ADFE为矩形.
【点睛】此题考查了中位线定理,平行四边形的判定和性质,矩形的判定和性质;解题的关键是数形结合,熟练运用上述知识.
24.(1)见解析
(2)12
【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,△BPE的周长最小.理由:证明△AB P′≌△AD P′,即可求解;
(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.
(1)
解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,△BPE的周长最小.
理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,
∵AP′=AP′,
∴△ABP′≌△ADP′,
∴BP′=DP′,
∴BP+PE= DP′+ P′E≥DE,
即当点P位于PP′时,△BPE的周长PB+EP+BE最小;
(2)
解:由(1)得:B P′=DP′,
∴P′B+P′E=DE.
∵BE=2,AE=3BE,
∴AE=6.
∴AD=AB=8.
∴DE==10.
∴PB+PE的最小值是10.
∴△BPE周长的最小值为10+BE=10+2=12.
【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.
25.(1)见解析;(2).
【分析】(1)由折叠可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;
(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.
【详解】(1)∵△DAE逆时针旋转90°得到△DCM,
∴DE=DM ,∠EDM=90°,
∴∠EDF + ∠FDM=90°,
∵∠EDF=45°,
∴∠FDM =∠EDM=45°,
∵ DF= DF,
∴△DEF≌△DMF,
∴ EF=MF
(2) 设EF=x,
∵AE=CM=1 ,
∴ BF=BM-MF=BM-EF=4-x,
∵ EB=2,
在Rt△EBF中,由勾股定理得,
即,
解得,.
26.(1)证明见解析;(2)4
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,
则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=4,BD=2OD=2,
∴菱形ABCD的面积为:AC BD=×4×2=4,
故答案为:4.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
27.(1)见解析;(2)见解析
【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;
(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.
【详解】证明:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC.
∵点C是BE的中点,
∴BC=CE,
∴AD=CE,
∵AD∥CE,
∴四边形ACED是平行四边形;
(2)∵四边形ABCD是平行四边形,
∴AB=DC,
∵AB=AE,
∴DC=AE,
∵四边形ACED是平行四边形,
∴四边形ACED是矩形.
【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.
28.(1)见解析;(2)MN=2
【分析】(1)证△OAM≌△OBN即可得;
(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2,HM=4,再根据勾股定理得OM=2 ,由直角三角形性质知MN=OM=2.
【详解】解:(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
(2)如图,过点O作OH⊥AD于点H,
∵正方形的边长为4,
∴OH=HA=2,
∵E为OM的中点,
∴HM=4,
则OM==2,
∴MN=OM=2.
【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.
29.(1)见解析;(2)96
【分析】(1)根据菱形的性质结合已知条件即可得证;
(2)由(1)所得结合菱形的性质计算出、的长度,再计算面积即可.
【详解】解:(1)证明:∵,,
∴四边形AEBO为平行四边形,
又∵四边形ABCD为菱形,
∴,
∴,
∴平行四边形AEBO为矩形;
(2)∵四边形AEBO为矩形,
∴AB=OE=10,
又∵四边形ABCD为菱形,
∴AO=AC=8,
∴,
∴,
∴BD=2BO=12,
∴菱形ABCD的面积=.
【点睛】本题考查了矩形的判定,菱形的性质,勾股定理;掌握好相关的基础知识是解决本题的关键.
30.(1)见解析;(2)6.5.(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由见详解;
【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.
(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.
(3)根据平行四边形的判定以及矩形的判定得出即可.
【详解】解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,4=∠6.
∵MN∥BC,
∴∠1=∠5,3=∠6.
∴∠1=∠2,∠3=∠4.
∴EO=CO,FO=CO.
∴OE=OF.
(2)∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°.
∵CE=12,CF=5,
∴.
∴OC=EF=6.5.
(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形.
∵∠ECF=90°,
∴平行四边形AECF是矩形.
31.(1)证明见解析(2)(3)当与的夹角为时,;当与的夹角为时,
【分析】(1)过作于点,于点,证明,得到,根据正方形的判定定理证明即可;
(2)通过计算发现是中点,点与重合,由(1)可知四边形是正方形,由此即可解决问题.
(3)分两种情形考虑问题即可;
【详解】解:(1)证明:过作于点,于点,如图:
∵四边形为正方形







∴在和


∴矩形是正方形.
(2)如图:
∵由(1)可知,在中,



∴与重合
∵四边形是正方形
∴.
(3)①当与的夹角为时,如图:
∵,


∴;
②当与的夹角为时,如图:
∵,



∴.
∴综上所述, 或
故答案是:(1)证明见解析(2)(3)当与的夹角为时,;当与的夹角为时,
【点睛】本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
32.(1)t;
(2)当t秒时,四边形ABQP是平行四边形;
(3)
【分析】(1)利用平行四边形的性质可证△APO≌△CQO,则AP=CQ,再利用即可得出答案;
(2)由平行四边形性质可知AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,建立一个关于t的方程,解方程即可求出t的值;
(3)在Rt△ABC中,由勾股定理求出AC的长度,进而求出AO的长度,然后利用的面积求出EF的长度,进而求出OE的长度,而AE可以用含t的代数式表示出来,最后在中利用勾股定理即可求值.
(1)
∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠PAO=∠QCO,
∵∠AOP=∠COQ,
∴△APO≌△CQO(ASA),
∴AP=CQ=t,
故答案为:t;
(2)
∵AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
即t=5﹣t,
t= ,
∴当t为秒时,四边形ABQP是平行四边形;
(3)
t= ,
如图,
在Rt△ABC中,
∵AB=3,BC=5,
∴AC=
∴AO=CO=AC=2,
∴3×4=5×EF,
∴,
∴,
∵OE是AP的垂直平分线,
∴AE=AP=t,∠AEO=90°,
由勾股定理得:AE2+OE2=AO2,
或(舍去)
∴当秒时,点O在线段AP的垂直平分线上.
【点睛】本题主要考查了平行四边形的判定及性质以及动点问题,掌握平行四边形的判定及性质,以及勾股定理是解题的关键.
33.(1)15;(2)t=6或;(3)能,t=5.
【分析】(1)先求出AP,即可求解;
(2)分两种情况讨论,由平行四边形的性质可求解;
(3)由菱形的性质可求DP=BP,由勾股定理可求解.
【详解】解:(1)当t=3时,则AP=3×1=3cm,
∴PB=AB﹣AP=18﹣3=15cm,
故答案为:15.
(2)若四边形PBCQ是平行四边形,
∴PB=CQ,
∴18﹣t=2t,
∴t=6,
若四边形PQDA是平行四边形,
∴AP=DQ,
∴t=23﹣2t,
∴t=,
综上所述:t=6或;
(3)如图,
若四边形PBQD是菱形,
∴BP=DP,
∵,
∴,
∴AP=5,
∴t==5,
∴当t=5时,四边形PBQD为菱形.
【点睛】本题考查了平行四边形,菱形的判定,勾股定理,分类思想,熟练掌握菱形的判定定理,灵活运用分类思想是解题的关键.
34.(1)cm
(2)4s
(3)3s
【分析】(1)当t=2秒时,表示出QC,AP的长,利用勾股定理求出PQ的长即可.
(2)根据线段AQ与DP互相平分,则四边形APQDA为矩形,也就是AP=DQ,分别用含t的代数式表示,解出即可.
(3)用t表示出四边形APQD的面积,再求出矩形面积的进而得出即可.
(1)
解:连接PQ,过D点P作PE⊥DQ于点E,如图所示:
∵AB=24cm,BC=10cm,点P从A开始沿AB边以4cm/s的速度运动,点QA从C开始沿CD边2cm/s的速度移动,
∴当t=2秒时,QC=4cm,AP=8cm,
∴DQ=24-QC=20cm,则EQ=12cm,
∴(cm),
∴P,Q两点之间的距离cm.
(2)
∵AP=4t,DQ=24-2t,
当线段AQ与DP互相平分,则四边形APQD为矩形时,
则AP=DQ,即4t=24-2t,
解得:t=4,
故t为4s时,线段AQ与DP互相平分.
(3)
∵P在AB上,




解得:,
∴t为3秒时,四边形APQD的面积为矩形面积的.
【点睛】本题考查了矩形的性质及勾股定理的应用,根据运动速度得出QC以及AP的长是解题关键.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览