1.2.3 矩形的性质与判定 课件(共29张PPT)2022—2023学年北师大版数学九年级上册

资源下载
  1. 二一教育资源

1.2.3 矩形的性质与判定 课件(共29张PPT)2022—2023学年北师大版数学九年级上册

资源简介

(共29张PPT)
1.2.3 矩形的性质与判定
第一章 特殊的平行四边形
1.掌握矩形的性质及判定方法
2.会运用矩形的性质及判定方法进行计算和证明(重点)
3.矩形的性质和判定方法与其他有关知识的综合运用(难点)
学习目标
新课导入
11 March 2023
1、定义:
有一个角是  的     叫做矩形。
2、性质和判定:
  性  质   判 定
 边
 角
对角线
同平行四边形
平行四边形
直角
四个角都是直角
对角线相等且互相平分
3、对角线相等的平行四边形.
2、有三个角是直角的四边形.
1、有一个角是直角的平行四边形.
A
B
C
D




O
讲授新课
典例精讲
归纳总结
讲授新课
例题
A
B
C
D
O
E
如图,矩形ABCD的对角线相交于点O,DE∥AC,
CE ∥BD.求证:四边形OCED是菱形.
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OC=OD,
∴四边形OCED是菱形.
矩形的性质与判定综合运用
讲授新课
例题
如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,求AE的长.
分析:由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AD=6,即可求得AE的长.
讲授新课
解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,∴∠ADE=90°-∠ABD=30°,
∴AE= AD=3.
【点评】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
讲授新课
例题
H
G
F
E
D
C
B
A
证明:连接AC、BD.
∵四边形ABCD是矩形,
∴AC=BD.
∵点E、F、G、H为各边中点,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.
讲授新课
C
A
B
D
E
F
G
H
【变式题】 如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?
解:四边形EFGH是菱形.
又∵AC=BD,
∵点E、F、G、H为各边中点,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.
归纳
理由如下:连接AC、BD
讲授新课
A
B
C
D
E
F
G
H
拓展1 如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
∵点E、F、G、H为各边中点,
∴四边形EFGH是平行四边形.
拓展2 如图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?
四边形EFGH是矩形.
同学们自己去解答吧
讲授新课
例题
已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.
(1)求证:四边形ADCE为矩形;
(2)连接DE,交AC于点F,请判断
四边形ABDE的形状,并证明;
(3)线段DF与AB有怎样的关系?请直接写出你的结论.
讲授新课
(1)证明:∵在△ABC中,AB=AC,AD是BC边的中线,
∴AD⊥BC,∠BAD=∠CAD,
∴∠ADC=90°,
∵AN为△ABC的外角∠CAM的平分线,
∴∠MAN=∠CAN,
∴∠DAE=90°,
∵CE⊥AN,
∴∠AEC=90°,
∴四边形ADCE为矩形;
(1)求证:四边形ADCE为矩形;
分析:由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形;
讲授新课
解:四边形ABDE是平行四边形,理由如下:
由(1)知,四边形ADCE为矩形,
则AE=CD,AC=DE.
又∵AB=AC,BD=CD,
∴AB=DE,AE=BD,
∴四边形ABDE是平行四边形;
(2)连接DE,交AC于点F,请判断四边形ABDE的形状,
并证明;
分析:利用(1)中矩形的对角线相等推知:AC=DE;结合已知条件可以推知AB∥DE,又AE=BD,则易判定四边形ABDE是平行四边形;
讲授新课
解:DF∥AB,DF= AB.理由如下:
∵四边形ADCE为矩形,
∴AF=CF,
∵BD=CD,
∴DF是△ABC的中位线,
∴DF∥AB,DF= AB
(3)线段DF与AB有怎样的关系?请直接写出你的结论.
分析:由四边形ADCE为矩形,可得AF=CF,又由AD是BC边的中线,即可得DF是△ABC的中位线,则可得DF∥AB,DF= AB.
【点评】此题考查了矩形的判定与性质、三线合一以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.
讲授新课
例题
如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
讲授新课
解:(1)BD=CD.理由如下:
∵AF∥BC,
∴∠AFE=∠DCE.
∵E是AD的中点,
∴AE=DE.
在△AEF和△DEC中,
∴△AEF≌△DEC(AAS),
∴AF=DC.
∵AF=BD,
∴BD=DC;
分析:根据“两直线平行,内错角相等”得出∠AFE=∠DCE,然后利用“AAS”证明△AEF和△DEC全等,根据“全等三角形对应边相等”可得AF=CD,再利用等量代换即可得BD=CD;
讲授新课
(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形.
∴AB=AC,BD=DC,
∴∠ADB=90°.
∴四边形AFBD是矩形.
【方法总结】本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.
分析:先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB=90°.由等腰三角形三线合一的性质可知△ABC满足的条件必须是AB=AC.
讲授新课
例题
如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比
为3∶1,求 的值.
讲授新课
(1)求证:CM=CN;
解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ANM=∠CMN,
由折叠知∠CNM=∠ANM,
∴∠CNM=∠CMN,
∴CN=CM 
讲授新课
(2)若△CMN的面积与△CDN的面积比为3∶1,求 的值.
解:∵AD∥BC,S△CMN∶S△CDN=3∶1,∴CM∶DN=3∶1,
设DN=x,则CM=3x,
过点N作NK⊥BC于点K,
∵DC⊥BC,∴NK∥DC,
又∵AD∥BC,∴CK=DN=x,MK=2x,
由(1)知CN=CM=3x,
∴NK2=CN2-CK2=(3x)2-x2=8x2,
 
当堂练习
1.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是(   )
A.S1>S2       B.S1=S2
C.S1B
当堂练习
2.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,AH⊥BC于点H,连接EH,若DF=10 cm,则EH等于(  )
A.8 cm  B.10 cm  C.16 cm  D.24 cm
B
当堂练习
3.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE=____度.
75
当堂练习
4.如图,在矩形ABCD中,AB=2,BC=4,点A,B分别在y轴,x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标为 .
当堂练习
5.如图,点D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
(1)求证:CD=AN;
(2)若∠AMD=2∠MCD,
求证:四边形ADCN是矩形. 
证明:(1)证△AMD≌△CMN得AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴CD=AN. 
当堂练习
(2)若∠AMD=2∠MCD,
求证:四边形ADCN是矩形. 
证明:
∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MD=MC,
由(1)知四边形ADCN是平行四边形,
∴MD=MN=MA=MC,
∴AC=DN,∴ ADCN是矩形. 
当堂练习
6.如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;
(2)求四边形OBEC的面积.
解:(1)∵四边形ABCD是菱形,∴AC⊥BD.
在Rt△OCD中,由勾股定理得OC=4cm;
(2)∵CE∥DB,BE∥AC,
∴四边形OBEC为平行四边形.
又∵AC⊥BD,即∠COB=90°,
∴平行四边形OBEC为矩形.
∵OB=OD=3cm,
∴S矩形OBEC=OB·OC=4×3=12(cm2).
课堂小结
与全等三角形的结合
矩形的性质与判定的综合
与平面直角坐标系的结合
折叠问题
谢谢大家!

展开更多......

收起↑

资源预览