资源简介 (共12张PPT)静电场的环路定理静电场的环路定理在静电场中,场强沿任意闭合路径的线积分(称为场强的环流)恒为零。若一矢量场的任意环路积分始终为0,则称该矢量场为无旋场。静电场两个基本性质:高斯定理:有源场环路定理:无旋场1.1 环路定理:2.2 电势数值上等于单位电荷从该点移到参考点电场力所做的功。注意电势零点的选取是任意的。2.3 电势差(电压)电场中两点电势之差沿着电场线方向,电势降低。对一点谈电势,对两点谈电压。电势差是绝对的,电势的大小是相对的。3.电势的计算1.1 点电荷的电势如图 P点的场强为由电势定义得讨论对称性以q为球心的同一球面上的点电势相等根据电场叠加原理场中任一点的1.2电势叠加原理点电荷系若场源为q1 、q2 qn的点电荷系场强电势各点电荷单独存在时在该点电势的代数和,注意(电势是一个标量)Rr例 均匀带电球体的电场。球半径为R,带电为q。电场分布也应有球对称性,方向沿径向。作同心且半径为r的高斯面解:1)r R时,高斯面EOrRRE r 关系曲线2)r R时,高斯面EσE例 均匀带电无限大平面的电场,已知 。电场分布也应有面对称性,方向沿法向。解: pE1E2E作轴线与平面垂直的圆柱形高斯面,底面积为S,两底面到带电平面距离相同。σESE圆柱形高斯面内电荷由高斯定理得高斯定理的应用习题已知无限大板电荷体密度为 ,厚度为d板外:板内:解选取如图的圆柱面为高斯面求电场场强分布 dSSdxxOEx例 无限长均匀带电圆柱面的电场。圆柱半径为R,面密度为 。rl作与带电圆柱同轴的圆柱形高斯面,解:电场分布也应有柱对称性,方向沿径向高为l,半径为r(1) r (2) r >Rlr 展开更多...... 收起↑ 资源预览