2022-2023学年高二物理竞赛课件:麦克斯韦速率分布律(共12张PPT)

资源下载
  1. 二一教育资源

2022-2023学年高二物理竞赛课件:麦克斯韦速率分布律(共12张PPT)

资源简介

(共12张PPT)
麦克斯韦速率分布律
麦克斯韦速率分布律
2 把速率分成很多相等的间隔 v,统计每 v间隔内的分子数 N
1 推定每个分子的速率
3 作曲线,拟合函数关系
研究思路:
1859年Maxwell用概率论证明了:平衡态下理想气体分子的速率分布函数为:
一 麦克斯韦速率分布函数
可知:对于某气体分子,如有t个平动自由度,r个转动自由度,s个振动自由度,有:
平均平动动能 t/2 KT
平均转动动能 r/2 KT
平均振动动能: s/2 KT
平均总动能为: 1/2(t+r+s)KT
假定是简谐振动:平均动能=平均势能,故:
平均总能量为 1/2(t+r+2s)KT
为简便计,常把气体分子看做刚性分子,既有S=0,并令i=t+r, 则平均总能量为:
单原子分子(He,Ar):
刚性双原子分子(H2,O2)
刚性多原子分子(H2O):
分子动能
分子内原子间的势能(平均振动势能)
分子间势能
内能
平均平动动能
平均转动动能
平均振动动能
一个分子总能量 : i/2 KT
1mol分子内能 : N0i/2 KT= i/2 RT
M千克气体内能 :
可见:内能只与T有关。
重 函数满足条件(标准化条件(单值、有限、连续) 、归一化 )
点 一块面积的意义
掌 一个点(最高点)的意义与位置
握 温度变化时曲线怎么变化(归一化)
曲线与温度的关系
二 、 三种速率
最可几速率 :
平均速率 :
方均根速率 :
热力学第一定律
如前述,对于刚性理想气体,内能是温度的单值函数
其中: i :自由度; n:摩尔数
改变系统内能有二法: 做功
热传递
设某过程中 :系统吸热Q,内能增加△E,对外做功A,易知三者必满足如下关系 :
Q = E+W=E2 -E1 +W
热力学第一定律适用于任何系统的任何过程(非准静态过程亦成立)。
符号规定: Q > 0 系统吸热
W > 0 系统对外界作正功
E > 0 系统内能增加
特别提示:后文中的“状态”指平衡状态,“过程”指准静态过程,有特别说明者除外
W、Q、 E的计算
V
dV(dl)
V2
V1
S
F
1. W的计算 (准静态过程,体积功)
dW = p s dl =pdv
P
o
V1
V2
V
W
·
·
1
2
P-V曲线下的面积即为W的大小。
可见,功是过程量,其值不仅与系统的始末状态有关,还与系统所经过的中间过程有关。
2. Q的计算
由 Q= E+W?→ W
可知,系统吸放的热量也与中间过程有关。
等容过程
P
V
·
·
V
o
1
2
等容升温
1 状态特点: V = const.
2 过程方程:
P
T
= const.
等容过程曲线
3 能量特征 与 转换关系:
W = 0
E = QV
等容过程中,吸热全部转换为系统内能的增加。
二 等温过程
V2
P
o
V
·
·
V1
1
2
等温膨胀
1 状态特点: T = const.
2 过程方程:
P V = const.
3 能量特征 与 转换关系:
等温过程曲线
E = 0
Q = W
等温过程中,系统吸热全部用来对外做功。
*等温过程功的计算公式
·
·
P
V
V1
V2
o
等压膨胀
1
2
三. 等压过程
1 状态特点: p = const.
2 过程方程:
3 能量特征 : W = P(V2 - V1)
等压过程曲线
v
T
= const
4 能量转化关系:
等压过程中,系统吸热一部分用于对外做功,其余用于增加系统内能
定义:摩尔热容,就是一摩尔某物质温度升高一度所吸收的热量。
定压摩尔热容
定容摩尔热容
一. 理想气体定容摩尔热容
对于等容过程,
dW=0
i
2
dQ = dE= n ( )RdT

二. 理想气体定压摩尔热容
对于等压过程
CP = CV + R
对比可知:
吸热与过程有关
思考:为何 CP > CV ?
泊松比
对单原子分子, i = 3, = 1.6
对双原子分子, i = 5, = 1.40
对多原子分子, i = 6, = 1.33
(以上均为刚性理想气体分子)

展开更多......

收起↑

资源预览