专题04 一次方程(组)-2023年中考一轮复习【高频考点】(讲义)(浙江专用)(解析版)

资源下载
  1. 二一教育资源

专题04 一次方程(组)-2023年中考一轮复习【高频考点】(讲义)(浙江专用)(解析版)

资源简介

中小学教育资源及组卷应用平台
专题04 一次方程(组)
【考情预测】
本考点以考查解一元一次方程和二元一次方程组、及一元一次方程与二元一次方程的应用为主,既有单独考查,也有在一次函数、二次函数的应用中解一元一次方程、二元一次方程组的工具性的考查,年年考查,,是广大考生的得分点,分值为8分左右。预计2023年浙江各地中考还将继续考查各种方程(组)的解法和应用题,为避免丢分,学生应扎实掌握。
【考点梳理】
1、方程和方程的解的概念
1)等式的性质
(1)等式两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式.
(2)等式两边都乘以(或除以)同一个不等于零的数,所得的结果仍是等式.
2)方程:含有未知数的等式叫做方程.
3)方程的解:使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程.
2、一元一次方程及其解法
1)一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为. 注意:x前面的系数不为0.
2)一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.
3)一元一次方程的求解步骤
变形名称 具体做法
去分母 在方程两边都乘以各分母的最小公倍数
去括号 先去小括号,再去中括号,最后去大括号
移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边
合并同类项 把方程化成的形式
系数化成1 在方程两边都除以未知数的系数,得到方程的解为
注意:解方程时移项容易忘记改变符号而出错,要注意解方程的依据是等式的性质,在等式两边同时加上或减去一个代数式时,等式仍然成立,这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项,此时该项在方程一边是0,而另一边是它改变符号后的项,所以移项必须变号.
3、二元一次方程(组)及解的概念
1)二元一次方程:含有2个未知数,且含有未知数的项的次数都是1的整式方程叫做二元一次方程.
2)二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
3)二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为.
4)解二元一次方程组的基本思想
解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.
5)二元一次方程组的解法
(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.
(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.
4、一次方程(组)的应用
1)列方程(组)解应用题的一般步骤
(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);
(5)检验结果;(6)作答(不要忽略未知数的单位名称).
2)一次方程(组)常见的应用题型
(1)销售打折:利润售价-成本;利润率=×100%;售价=标价×折扣;销售额=售价×数量.
(2)储蓄利息:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.
(3)工程问题:工作量=工作效率×工作时间.
(4)行程问题:路程=速度×时间.
(5)相遇问题:全路程=甲走的路程+乙走的路程.
(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.
(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.
(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.
【重难点突破】
考点1. 一元一次方程及相关概念
【解题技巧】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是(是常数且).
【典例精析】
例1.(2022·福建·统考中考真题)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.
例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:
设任意一个实数为x,令,
等式两边都乘以x,得.①
等式两边都减,得.②
等式两边分别分解因式,得.③
等式两边都除以,得.④
等式两边都减m,得x=0.⑤
所以任意一个实数都等于0.
以上推理过程中,开始出现错误的那一步对应的序号是______.
【答案】④
【分析】根据等式的性质2即可得到结论.
【详解】等式的性质2为:等式两边同乘或除以同一个不为0的整式,等式不变,
∴第④步等式两边都除以,得,前提必须为,因此错误;故答案为:④.
【点睛】本题考查等式的性质,熟知等式的性质是解题的关键.
例2.(2022·浙江杭州·一模)已知关于的方程的解是,则的值为 __.
【答案】
【分析】把代入方程计算即可求出的值.
【详解】解:把代入方程得:,解得:,故答案为:.
【点睛】本题考查了一元一次方程的解,解题的关键在于理解方程的解即为能使方程左右两边相等的未知数的值.
【变式训练】
变式1.(2022·山东滨州·中考真题)在物理学中,导体中的电流Ⅰ跟导体两端的电压U,导体的电阻R之间有以下关系:去分母得,那么其变形的依据是( )
A.等式的性质1 B.等式的性质2 C.分式的基本性质 D.不等式的性质2
【答案】B
【分析】根据等式的性质2可得答案.
【详解】解:去分母得,其变形的依据是等式的性质2,故选:B.
【点睛】本题考查了等式的性质2:等式的两边同时乘以或除以同一个不为零的数,等式仍然成立.
变式2.(2022·浙江·中考模拟)关于的方程如果是一元一次方程,则其解为_____.
【答案】或或x=-3.
【分析】利用一元一次方程的定义判断即可.
【详解】解:关于的方程如果是一元一次方程,
,即或,方程为或,解得:或,
当2m-1=0,即m=时,方程为解得:x=-3,故答案为x=2或x=-2或x=-3.
【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.
变式3.(2022·江苏苏州·统考二模)关于x的方程kx+5=0的解是负数,则k的取值范围为_________.
【答案】k>0
【分析】直接解方程组,再根据方程的解是负数即可得到答案.
【详解】∵kx+5=0,当时,等式不成立∴∴∴
∵x为负数∴∴故答案为:
【点睛】本题考查解一元一次方程和不等式的相关知识,分类讨论是解题的关键.
考点2. 解一元一次方程
【解题技巧】
解一元一次方程的主要步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1.
【典例精析】
例1.(2021·浙江温州市·中考真题)解方程,以下去括号正确的是( )
A. B. C. D.
【答案】D
【分析】去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.
【详解】解:,,故选:D.
【点睛】此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.
例2.(2022·浙江杭州·中考真题)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.
【答案】(1)-9(2)3
【分析】(1)根据有理数混合运算法则计算即可;
(2)设被污染的数字为x,由题意,得,解方程即可;
(1)解:;
(2)设被污染的数字为x,
由题意,得,解得,所以被污染的数字是3.
【点睛】本题考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.
【变式训练】
变式1.(2022·广西·中考真题)方程3x=2x+7的解是( )
A.x=4 B.x=﹣4 C.x=7 D.x=﹣7
【答案】C
【分析】先移项再合并同类项即可得结果;
【详解】解:3x=2x+7移项得,3x-2x=7;合并同类项得,x=7;故选:C.
【点睛】本题主要考查解一元一次方程,掌握一元一次方程的求解步骤是解题的关键.
变式2.(2020·浙江杭州市·中考真题)以下是圆圆解方程=1的解答过程.
解:去分母,得3(x+1)﹣2(x﹣3)=1.
去括号,得3x+1﹣2x+3=1.
移项,合并同类项,得x=﹣3.
圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.
【答案】圆圆的解答过程有错误,正确的解答过程见解析
【分析】直接利用一元一次方程的解法进而分析得出答案.
【详解】解:圆圆的解答过程有错误,
正确的解答过程如下:3(x+1)﹣2(x﹣3)=6.
去括号,得3x+3﹣2x+6=6.
移项,合并同类项,得x=﹣3.
【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的求解方法.
变式3.(2021·浙江衢州·统考一模)对于方程,某同学解法如下:
解:方程两边同乘6,得2x-3(x-1)=1①
去括号,得2x-3x-3=1②
合并同类项,得-x-3=1③
移项,得-x=4④
∴x=-4⑤
(1)上述解答过程从第 步开始出现错误;
(2)请写出正确的解答过程.
【答案】(1)①;(2),过程见解析.
【分析】(1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;
(2)注意改正错误,按以上步骤进行即可.
【详解】解:(1)方程两边同乘6,得①
∴从第①步开始已经出现错误,故答案是①;
(2)解:
方程两边同乘6,得
去括号,得,
合并同类项,得,
移项,合并计算得
解得.
【点睛】本题考查的是解一元一次方程,注意去分母与去括号中常见错误,熟悉相关解法是解题关键.
考点3.一元一次方程的应用
【解题技巧】列方程解实际应用题的一般步骤:
(1)审:审清题意,分清题中的已知量、未知量;(2)设:恰当设出关键未知数;
(3)列:找出适当等量关系,列方程;(4)解:解方程;
(5)验:检验所解值是否正确或是否符合实际意义;(6)答:规范作答,注意单位名称.
【典例精析】
例1.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为(),则( )
A. B. C. D.
【答案】D
【分析】根据题意可直接列出方程进行排除选项即可.
【详解】解:由题意得:;故选D.
【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
例2.(2022·浙江绍兴·中考真题)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.” 其题意为:“良马每天行里,劣马每天行里,劣马先行天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.
【答案】20
【分析】设良马x天追上劣马,根据良马追上劣马所走路程相同可得:240x=150(x+12),即可解得良马20天追上劣马.
【详解】解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,
答:良马20天追上劣马;故答案为:20.
【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.
【变式训练】
变式1.(2022·广西贺州·中考真题)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是,高是;圆柱体底面半径是,液体高是.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )
A. B. C. D.
【答案】B
【分析】根据液体的体积不变列方程解答.
【详解】解:圆柱体内液体的体积为:
由题意得,,故选:B.
【点睛】本题考查一元一次方程的应用,涉及圆柱与圆锥的体积,是基础考点,掌握液体体积不变列方程是解题关键.
变式2.(2022·湖南·中考真题)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.
【答案】296km/h
【分析】设高铁的速度,再表示出普通列车的速度,然后根据高铁行驶的路程+40=普通列车行驶的路程列出方程,再求出解即可.
【详解】解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x-200)km/h,
由题意得:x+40=3.5(x-200),解得:x=296.答:高铁的平均速度为296 km/h.
【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.
变式3.(2022·浙江嘉兴·中考真题)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使扩大到原来的n()倍,且钢梁保持水平,则弹簧秤读数为_______(N)(用含n,k的代数式表示).
【答案】
【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.
【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:解得故答案为:.
【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.
考点4.二元一次方程(组)的相关概念
【解题技巧】
(1)二元一次方程应满足:①含有2个未知数;②含有未知数的项的次数都是1;③是整式方程.
(2)由两个二元一次方程组成的方程组叫二元一次方程组.
【典例精析】
例1.(2021·浙江嘉兴市·中考真题)已知二元一次方程,请写出该方程的一组整数解_________.
【答案】(答案不唯一)
【分析】根据题意确定出方程的整数解即可.
【详解】解:方程的一组整数解为故答案为:(答案不唯一)
【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
例2.(2020·浙江绍兴市·中考真题)若关于x,y的二元一次方程组的解为,则多项式A可以是_____(写出一个即可).
【答案】答案不唯一,如x﹣y.
【分析】根据方程组的解的定义,应该满足所写方程组的每一个方程.因此,可以围绕列一组算式,然后用x,y代换即可.
【详解】∵关于x,y的二元一次方程组的解为,而1﹣1=0,
∴多项式A可以是答案不唯一,如x﹣y.故答案为:答案不唯一,如x﹣y.
【点睛】此题考查二元一次方程组的定义,二元一次方程组的解,正确理解方程组的解与每个方程的关系是解题的关键.
【变式训练】
变式1.(2022·四川雅安·中考真题)已知是方程ax+by=3的解,则代数式2a+4b﹣5的值为 _____.
【答案】1
【分析】把代入ax+by=3可得,而2a+4b﹣5,再整体代入求值即可.
【详解】解:把代入ax+by=3可得:,
2a+4b﹣5 .故答案为:1
【点睛】本题考查的是二元一次方程的解,利用整体代入法求解代数式的值,掌握“方程的解的含义及整体代入的方法”是解本题的关键.
变式2.(2022·浙江·九年级期中)若关于x,y的方程是一个二元一次方程,则m的值为_____________.
【答案】-1
【分析】根据二元一次方程定义可得:|m|=1,且m-1≠0,再解即可.
【详解】解:由题意得:|m|=1,且m-1≠0,解得:m= -1,故答案为:-1.
【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
变式3.(2022·浙江宁波·校考一模)若是二元一次方程组的解,则一次函数的图象不经过第________象限.
【答案】二
【分析】将x=a,y=b代入二元一次方程组求出a、b的值,再把a、b的值代入,得到一次函数解析式,根据a、b的符号判定一次函数图象不经过的象限.
【详解】∵是二元一次方程的解,
∴,解得,,∴y=3x-1,
∴一次函数的图象经过第一,三,四象限,
∴一次函数的图象不经过第二象限.故答案为:二.
【点睛】本题主要考查了方程组的解,解方程组,一次函数,解决问题的关键是熟练掌握方程组解的定义和性质,解方程组的一般方法,一次函数的性质.
考点5. 解二元一次方程组
【解题技巧】
二元一次方程组的两种解法:①加减消元法;②代入消元法.
【典例精析】
例1.(2022·湖南株洲·中考真题)对于二元一次方程组,将①式代入②式,消去可以得到( )
A. B. C. D.
【答案】B
【分析】将①式代入②式消去去括号即可求得结果.
【详解】解:将①式代入②式得,,故选B.
【点睛】本题考查了代入消元法求解二元一次方程组,熟练掌握代入消元法是解题的关键.
例2.(2022·浙江台州·中考真题)解方程组:.
【答案】
【分析】用加减消元法解二元一次方程组即可;
【详解】.解:,得.把代入①,得.
∴原方程组的解为.
【点睛】本题考查了二元一次方程组的解法,本题使用加减消元法比较简单,当然使用代入消元求解二元一次方程组亦可.
【变式训练】
变式1.(2020·浙江嘉兴市·中考真题)用加减消元法解二元一次方程组时,下列方法中无法消元的是(  )
A.①×2﹣② B.②×(﹣3)﹣① C.①×(﹣2)+② D.①﹣②×3
【答案】D
【分析】根据各选项分别计算,即可解答.
【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;
B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;
D、①﹣②×3无法消元,符合题意.故选:D.
【点睛】本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元.
变式2.(2023·浙江·中考模拟)关于x、y的二元一次方程组的解为,则关于m,n的二元一次方程组的解为( )
A. B. C. D.
【答案】C
【分析】利用关于、的二元一次方程组的解为得到,,从而求出、即可.
【详解】解:关于、的二元一次方程组的解为,
把关于,的二元一次方程组看作关于和的二元一次方程组,
,解得:.关于,的二元一次方程组为.选:.
【点睛】此题考查了二元一次方程组的解,利用了类比的方法,弄清题中方程组解的特征是解本题的关键.
变式3.(2022·浙江绍兴·中考真题)计算(1)计算:6tan30°+(+1)0-. (2)解方程组
【答案】(1)1 (2)
【分析】(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可;
(2)利用加减消元法解二元一次方程组即可.
【解析】 (1)解:原式=;
(2),①+②得3x=6,∴x=2,
把x=2代入②,得y=0,∴原方程组的解是.
【点睛】本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.
考点6. 二元一次方程组的应用
【解题技巧】
由实际问题抽象出二元一次方程组的主要步骤:①弄清题意;②找准题中的两个等量关系;③设出合适的未知数;④根据找到的等量关系列出两个方程并联立成二元一次方程组.
【典例精析】
例1.(2022·浙江舟山·中考真题)上学期某班的学生都是双人同桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x人,女生y人,根据题意可得方程组为( )
A. B. C. D.
【答案】A
【分析】设上学期该班有男生x人,女生y人,则本学期男生有(x+4)人,根据题意,列出方程组,即可求解.
【详解】解:设上学期该班有男生x人,女生y人,则本学期男生有(x+4)人,根据题意得:
.故选:A
【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键
例2.(2021·浙江衢州市·中考真题)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:”五只雀、六只燕,共重1斤(占时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组( )
A. B. C. D.
【答案】A
【分析】根据“五只雀、六只燕,共重1斤(占时1斤等于16两),雀重燕轻.互换其中一只,恰好一样重”,即可得出关于x,y的二元一次方程组,此题得解.
【详解】解:依题意,得:故选:A.
【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
【变式训练】
变式1.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为( )
A. B. C. D.
【答案】A
【分析】根据“现在拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.
【详解】解:依题意,得:.故选:A.
【点睛】本题考查了由实际问题抽象出二元一次方程组和数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
变式2.(2022·浙江宁波·中考真题)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再春成米,共得米7斗.问原来有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为( )
A. B. C. D.
【答案】A
【分析】根据题意列出方程组即可;
【详解】原来有米x斗,向桶中加谷子y斗,容量为10斗,则;
已知谷子出米率为,则来年共得米;则可列方程组为,故选A.
【点睛】本题考查了根据实际问题列出二元一次方程组,题目较简单,根据题意正确列出方程即可.
变式3.(2022·浙江嘉兴·中考真题)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为( )
A. B. C. D.
【答案】A
【分析】由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场平场负场,得分总和为17.
【详解】解:设该队胜了x场,平了y场,
根据题意,可列方程组为:,故选:A.
【点睛】根据实际问题中的条件列方程组时,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
考点7. 一次方程(组)的新定义问题
【解题技巧】
【典例精析】
例1.(2020·湖北·中考真题)在实数范围内定义运算“☆”:,例如:.如果,则的值是( ).
A. B.1 C.0 D.2
【答案】C
【分析】根据题目中给出的新定义运算规则进行运算即可求解.
【详解】解:由题意知:,
又,∴,∴.故选:C.
【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.
例2.(2023·湖北中考模拟)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为______和______.
【答案】2 9
【分析】设图中两空白圆圈内应填写的数字从左到右依次为 ,根据“外圆两直径上的四个数字之和相等,内、外两个圆周上的四个数字之和相等”可得关于a、b的方程组,解方程组即可求得答案.
【详解】设图中两空白圆圈内应填写的数字从左到右依次为 ,
∵外圆两直径上的四个数字之和相等,∴①,
∵内、外两个圆周上的四个数字之和相等,∴②,
联立①②解得:,,∴图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为2;9.
【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出方程组是解题的关键.
【变式训练】
变式1.(2022·山东威海·中考真题)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn=_____.
【答案】1
【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m-n+4,第三行中间数字为n-6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m可得关于m,n方程组,解出即可.
【详解】如图,根据题意,可得
第二行的数字之和为:m+2+(-2)=m可知第三行左边的数字为:m-(-4)-m=4
第一行中间的数字为:m-n-(-4)=m-n+4 第三行中间数字为m-2-(m-n+4)=n-6
第三行右边数字为:m-n-(-2)=m-n+2
再根据对角线上的三个数字之和相等且都等于m可得方程组为:
解得 ∴ 故答案为:1
【点睛】本题考查了有理数加法,列代数式,以及二元一次方程组,解题的关键是根据表格,利用每行,每列,每条对角线上的三个数之和相等列方程.
变式2.(2021·重庆中考真题)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”例如:,因为,所以3507是“共生数”:,因为,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;
(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记.求满足各数位上的数字之和是偶数的所有n.
【答案】(1)是“共生数”, 不是“共生数”. (2)或
【分析】(1)根据“共生数”的定义逐一判断两个数即可得到答案;
(2)设“共生数”的千位上的数字为 则十位上的数字为 设百位上的数字为 个位上的数字为 可得:< 且为整数,再由“共生数”的定义可得:而由题意可得:或 再结合方程的正整数解分类讨论可得答案.
【详解】解:(1) 是“共生数”,
不是“共生数”.
(2)设“共生数”的千位上的数字为 则十位上的数字为 设百位上的数字为 个位上的数字为
< 且为整数,
所以:
由“共生数”的定义可得:
百位上的数字与个位上的数字之和能被9整除,
或或
当 则 则 不合题意,舍去,
当时,则
当时, 此时: ,而不为偶数,舍去,
当时,此时: ,而为偶数,
当时, 此时: ,而为偶数,
当时,则 而则不合题意,舍去,
综上:满足各数位上的数字之和是偶数的或
【点睛】本题考查的是新定义情境下的实数的运算,二元一次方程的正整数解,分类讨论的数学思想的运用,准确理解题意列出准确的代数式与方程是解题的关键.
变式3.(2022·湖南·中考模拟)阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( )
A. B. C. D.方程组的解为
【答案】C
【分析】根据阅读材料中提供的方法逐项进行计算即可得.
【解析】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;
B、Dx==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;
C、Dy==2×12﹣1×3=21,故C选项不正确,符合题意;
D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.
【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题04 一次方程(组)
【考情预测】
本考点以考查解一元一次方程和二元一次方程组、及一元一次方程与二元一次方程的应用为主,既有单独考查,也有在一次函数、二次函数的应用中解一元一次方程、二元一次方程组的工具性的考查,年年考查,,是广大考生的得分点,分值为8分左右。预计2023年浙江各地中考还将继续考查各种方程(组)的解法和应用题,为避免丢分,学生应扎实掌握。
【考点梳理】
1、方程和方程的解的概念
1)等式的性质
(1)等式两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式.
(2)等式两边都乘以(或除以)同一个不等于零的数,所得的结果仍是等式.
2)方程:含有未知数的等式叫做方程.
3)方程的解:使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程.
2、一元一次方程及其解法
1)一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为. 注意:x前面的系数不为0.
2)一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.
3)一元一次方程的求解步骤
变形名称 具体做法
去分母 在方程两边都乘以各分母的最小公倍数
去括号 先去小括号,再去中括号,最后去大括号
移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边
合并同类项 把方程化成的形式
系数化成1 在方程两边都除以未知数的系数,得到方程的解为
注意:解方程时移项容易忘记改变符号而出错,要注意解方程的依据是等式的性质,在等式两边同时加上或减去一个代数式时,等式仍然成立,这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项,此时该项在方程一边是0,而另一边是它改变符号后的项,所以移项必须变号.
3、二元一次方程(组)及解的概念
1)二元一次方程:含有2个未知数,且含有未知数的项的次数都是1的整式方程叫做二元一次方程.
2)二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
3)二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为.
4)解二元一次方程组的基本思想
解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.
5)二元一次方程组的解法
(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.
(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.
4、一次方程(组)的应用
1)列方程(组)解应用题的一般步骤
(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);
(5)检验结果;(6)作答(不要忽略未知数的单位名称).
2)一次方程(组)常见的应用题型
(1)销售打折:利润售价-成本;利润率=×100%;售价=标价×折扣;销售额=售价×数量.
(2)储蓄利息:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.
(3)工程问题:工作量=工作效率×工作时间.
(4)行程问题:路程=速度×时间.
(5)相遇问题:全路程=甲走的路程+乙走的路程.
(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.
(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.
(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.
【重难点突破】
考点1. 一元一次方程及相关概念
【解题技巧】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是(是常数且).
【典例精析】
例1.(2022·福建·统考中考真题)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.
例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:
设任意一个实数为x,令,
等式两边都乘以x,得.①
等式两边都减,得.②
等式两边分别分解因式,得.③
等式两边都除以,得.④
等式两边都减m,得x=0.⑤
所以任意一个实数都等于0.
以上推理过程中,开始出现错误的那一步对应的序号是______.
例2.(2022·浙江杭州·一模)已知关于的方程的解是,则的值为 __.
【变式训练】
变式1.(2022·山东滨州·中考真题)在物理学中,导体中的电流Ⅰ跟导体两端的电压U,导体的电阻R之间有以下关系:去分母得,那么其变形的依据是( )
A.等式的性质1 B.等式的性质2 C.分式的基本性质 D.不等式的性质2
变式2.(2022·浙江·模拟)关于的方程如果是一元一次方程,则其解为__.
变式3.(2022·江苏苏州·统考二模)关于x的方程kx+5=0的解是负数,则k的取值范围为_________.
考点2. 解一元一次方程
【解题技巧】
解一元一次方程的主要步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1.
【典例精析】
例1.(2021·浙江温州市·中考真题)解方程,以下去括号正确的是( )
A. B. C. D.
例2.(2022·浙江杭州·中考真题)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.
【变式训练】
变式1.(2022·广西·中考真题)方程3x=2x+7的解是( )
A.x=4 B.x=﹣4 C.x=7 D.x=﹣7
变式2.(2020·浙江杭州市·中考真题)以下是圆圆解方程=1的解答过程.
解:去分母,得3(x+1)﹣2(x﹣3)=1.
去括号,得3x+1﹣2x+3=1.
移项,合并同类项,得x=﹣3.
圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.
变式3.(2021·浙江衢州·统考一模)对于方程,某同学解法如下:
解:方程两边同乘6,得2x-3(x-1)=1①
去括号,得2x-3x-3=1②
合并同类项,得-x-3=1③
移项,得-x=4④
∴x=-4⑤
(1)上述解答过程从第 步开始出现错误;
(2)请写出正确的解答过程.
考点3.一元一次方程的应用
【解题技巧】列方程解实际应用题的一般步骤:
(1)审:审清题意,分清题中的已知量、未知量;(2)设:恰当设出关键未知数;
(3)列:找出适当等量关系,列方程;(4)解:解方程;
(5)验:检验所解值是否正确或是否符合实际意义;(6)答:规范作答,注意单位名称.
【典例精析】
例1.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为(),则( )
A. B. C. D.
例2.(2022·浙江绍兴·中考真题)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.” 其题意为:“良马每天行里,劣马每天行里,劣马先行天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.
【变式训练】
变式1.(2022·广西贺州·中考真题)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是,高是;圆柱体底面半径是,液体高是.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )
A. B. C. D.
变式2.(2022·湖南·中考真题)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.
变式3.(2022·浙江嘉兴·中考真题)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使扩大到原来的n()倍,且钢梁保持水平,则弹簧秤读数为_______(N)(用含n,k的代数式表示).
考点4.二元一次方程(组)的相关概念
【解题技巧】
(1)二元一次方程应满足:①含有2个未知数;②含有未知数的项的次数都是1;③是整式方程.
(2)由两个二元一次方程组成的方程组叫二元一次方程组.
【典例精析】
例1.(2021·浙江嘉兴市·中考真题)已知二元一次方程,请写出该方程的一组整数解_________.
例2.(2020·浙江绍兴市·中考真题)若关于x,y的二元一次方程组的解为,则多项式A可以是_____(写出一个即可).
【变式训练】
变式1.(2022·四川雅安·中考真题)已知是方程ax+by=3的解,则代数式2a+4b﹣5的值为 _____.
变式2.(2022·浙江·九年级期中)若关于x,y的方程是一个二元一次方程,则m的值为_____________.
变式3.(2022·浙江宁波·校考一模)若是二元一次方程组的解,则一次函数的图象不经过第________象限.
考点5. 解二元一次方程组
【解题技巧】
二元一次方程组的两种解法:①加减消元法;②代入消元法.
【典例精析】
例1.(2022·湖南株洲·中考真题)对于二元一次方程组,将①式代入②式,消去可以得到( )
A. B. C. D.
例2.(2022·浙江台州·中考真题)解方程组:.
【变式训练】
变式1.(2020·浙江嘉兴市·中考真题)用加减消元法解二元一次方程组时,下列方法中无法消元的是(  )
A.①×2﹣② B.②×(﹣3)﹣① C.①×(﹣2)+② D.①﹣②×3
变式2.(2023·浙江·中考模拟)关于x、y的二元一次方程组的解为,则关于m,n的二元一次方程组的解为( )
A. B. C. D.
变式3.(2022·浙江绍兴·中考真题)计算(1)计算:6tan30°+(+1)0-. (2)解方程组
考点6. 二元一次方程组的应用
【解题技巧】
由实际问题抽象出二元一次方程组的主要步骤:①弄清题意;②找准题中的两个等量关系;③设出合适的未知数;④根据找到的等量关系列出两个方程并联立成二元一次方程组.
【典例精析】
例1.(2022·浙江舟山·中考真题)上学期某班的学生都是双人同桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x人,女生y人,根据题意可得方程组为( )
A. B. C. D.
例2.(2021·浙江衢州市·中考真题)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:”五只雀、六只燕,共重1斤(占时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组( )
A. B. C. D.
【变式训练】
变式1.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为( )
A. B. C. D.
变式2.(2022·浙江宁波·中考真题)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再春成米,共得米7斗.问原来有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为( )
A. B. C. D.
变式3.(2022·浙江嘉兴·中考真题)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为( )
A. B. C. D.
考点7. 一次方程(组)的新定义问题
【典例精析】
例1.(2020·湖北·中考真题)在实数范围内定义运算“☆”:,例如:.如果,则的值是( ).
A. B.1 C.0 D.2
例2.(2023·湖北中考模拟)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为______和______.
【变式训练】
变式1.(2022·山东威海·中考真题)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn=_____.
变式2.(2021·重庆中考真题)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”例如:,因为,所以3507是“共生数”:,因为,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;
(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记.求满足各数位上的数字之和是偶数的所有n.
变式3.(2022·湖南·中考模拟)阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( )
A. B. C. D.方程组的解为
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题04 一次方程(组)
【考场演练1】热点必刷
1.(2022·浙江金华·统考一模)解方程, 以下去分母正确的是 ( ).
A. B. C. D.
【答案】B
【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数12,去分母的过程中需要注意没有分母的项不能漏乘.
【详解】方程两边同时乘12,得
去括号,得 故选:B.
【点睛】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是使方程接近x=a的形式.在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.
2.(2022·南充·统考二模)已知x、y满足方程组,且x与y互为相反数,则m的值为( )
A. B. C. D.
【答案】A
【分析】根据题意可得x+y=0,由方程组的解法可得3x+3y=2m+4,代入计算即可.
【详解】解:,①+②得,3x+3y=2m+4,即3(x+y)=2m+4,
又∵x与y互为相反数,∴x+y=0,即2m+4=0,解得m=-2,故选:A.
【点睛】本题考查二元一次方程组的解,掌握二元一次方程组的解法以及相反数的定义是正确解答的前提.
3.(2022·四川南充·中考真题)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为( )
A. B. C. D.
【答案】D
【分析】设鸡有x只,则兔子有(35-x)只,根据足共有94列出方程即可.
【详解】解:设鸡有x只,则兔子有(35-x)只,根据题意可得:2x+4(35-x)=94,故选:D.
【点睛】题目主要考查一元一次方程的应用,理解题意列出方程是解题关键.
4.(2022·江苏扬州·中考真题)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有只,兔有只,那么可列方程组为( )
A. B. C. D.
【答案】D
【分析】一只鸡1个头2个足,一只兔1个头4个足,利用共35头,94足,列方程组即可
【详解】一只鸡1个头2个足,一只兔1个头4个足
设鸡有只,兔有只 由35头,94足,得:故选:D
【点睛】本题考查方程组的实际应用,注意结合实际情况,即一只鸡1个头2个足,一只兔1个头4个足,去列方程
5.(2022·黑龙江齐齐哈尔·中考真题)端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )
A.2种 B.3种 C.4种 D.5种
【答案】C
【分析】设使用A食品盒x个,使用B食品盒y个,根据题意列出方程,求解即可.
【详解】设使用A食品盒x个,使用B食品盒y个,根据题意得,8x+10y=200,
∵x、y都为正整数,∴解得,,,,
∴一共有4种分装方式;故选:C.
【点睛】本题考查了二元一次方程的实际问题,解题的关键是明确题意列出方程.
6.(2022·贵州铜仁·中考真题)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )
A.14 B.15 C.16 D.17
【答案】B
【分析】设小红答对的个数为x个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.
【详解】解:设小红答对的个数为x个,
由题意得,解得,故选B.
【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.
4.(2022·浙江·九年级期末)已知,都是关于,的方程的一个解,则下列对于:,的关系判断正确的是( )
A. B. C. D.
【答案】A
【分析】将两组解代入方程,得到,两式相减可得a-b的值.
【详解】解:由题意,将与代入得:,
①-②得:.故选:A.
【点睛】本题考查了二元一次方程的解,加减消元法,方程的解即为能使方程左右两边相等的未知数的值.
6.(2022·浙江杭州·中考真题)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则( )
A. B. C. D.
【答案】C
【分析】根据题中数量关系列出方程即可解题;
【详解】解:由10张A票的总价与19张B票的总价相差320元可知,
或,∴,故选:C.
【点睛】本题主要考查二元一次方程的应用,解题的关键在于能根据实际情况对题目全面分析.
7.(2022·浙江丽水·三模)若方程组,设,,则代数式 的值为(  )
A. B. C. D.
【答案】B
【分析】根据方程组的特点,将两个方程相减,即可以得到 的值;再将两个方程相加,即可得到的值,进而得到 、 的值.
【详解】解: 由 得:
由 得:
,,故选B.
【点睛】本题考查二元一次方程组和根式运算的知识点,能运用整体思想解决问题是本题解题的关键.
8.(2021·安徽中考真题)设a,b,c为互不相等的实数,且,则下列结论正确的是( )
A. B. C. D.
【答案】D
【分析】举反例可判断A和B,将式子整理可判断C和D.
【详解】解:A.当,,时,,故A错误;
B.当,,时,,故B错误;
C.整理可得,故C错误;
D.整理可得,故D正确;故选:D.
【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.
9.(2022·河北·中考真题)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是( )
A.依题意 B.依题意
C.该象的重量是5040斤 D.每块条形石的重量是260斤
【答案】B
【分析】根据题意列出方程即可解答.
【详解】解:根据题意可得方程;故选:B.
【点睛】本题主要考查一元一次方程的应用,根据题意真确列出方程是解题的关键.
10.(2022·浙江·九年级中考模拟)下列方程组中是二元一次方程组的是( )
A. B. C. D.
【答案】B
【分析】根据二元一次方程组的定义判断即可.
【详解】A、不是整式方程,故此选项错误;B、符合二元一次方程组的定义,故此选项正确;
C、含有三个未知数,故此选项错误;D、未知数的次数是2,故此选项错误;故选:B.
【点睛】本题考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.
11.(2020·浙江绍兴市·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地(  )
A.120km B.140km C.160km D.180km
【答案】B
【分析】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,然后画出图形、确定等量关系、列出关于x和y的二元一次方程组并求解即可.
【详解】解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:
设AB=xkm,AC=ykm,根据题意得:,解得: .
∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.故答案为B.
【点睛】本题考查了二元一次方程组在行程问题中的应用,弄清题意、确定等量关系、列出方程组是解答本题的关键.
12.(2021·山东枣庄市·中考真题)已知,满足方程组,则的值为______.
【答案】
【分析】将方程组中的两个方程相减即可得.
【详解】解:,由①②得:,则,故答案为:.
【点睛】本题考查了解二元一次方程,熟练掌握方程组的解法是解题关键.
13.(2022·广西贺州·中考真题)若实数m,n满足,则__________.
【答案】7
【分析】根据非负数的性质可求出m、n的值,进而代入数值可求解.
【详解】解:由题意知,m,n满足,
∴m-n-5=0,2m+n 4=0,∴m=3,n=-2,∴,故答案为:7.
【点睛】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.
14.(2022·江苏无锡·中考真题)二元一次方程组的解为________.
【答案】
【分析】方程组利用加减消元法求出解即可.
【详解】解:.①+②×2得:7x=14,解得:x=2,把x=2代入②得:2×2-y=1解得:y=3,
所以,方程组的解为,故答案为:.
【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
15.(2022·贵州黔东南·中考真题)若,则的值是________.
【答案】9
【分析】根据非负数之和为0,每一项都为0,分别算出x,y的值,即可
【详解】∵
∴解得:故答案为:9
【点睛】本题考查非负数之和为零,解二元一次方程组;根据非负数之和为零,每一项都为0,算出x,y的值是解题关键
16.(2022·吉林·中考真题)《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛.根据题意,可列方程组为__________.
【答案】##
【分析】根据题中两个等量关系:5个大桶加上1个小桶可以盛酒3斛;1个大桶加上5个小桶可以盛酒2斛,列出方程组即可.
【详解】由题意得:故答案为:.
【点睛】本题考查了列二元一次方程组解实际问题,理解题意、找到等量关系并列出方程组是解题的关键.
17.(2022·湖北随州·中考真题)已知二元一次方程组,则的值为______.
【答案】1
【分析】直接由②-①即可得出答案.
【详解】原方程组为,由②-①得.故答案为:1.
【点睛】本题考查二元一次方程组的特殊解法,解题的关键是学会观察,并用整体法求解.
18.(2022·北京东城·统考一模)我国古代天文学和数学著作《周髀算经》中提到:一年有二十四个节气,每个节气的 (ɡuǐ)长损益相同( 是按照日影测定时刻的仪器, 长即为所测量影子的长度),二十四节气如图所示.从冬至到夏至 长逐渐变小,从夏至到冬至 长逐渐变大,相邻两个节气 长减少或增加的量均相同,周而复始.若冬至的 长为13.5尺,夏至的 长为1.5尺,则相邻两个节气 长减少或增加的量为________尺,立夏的 长为_______尺.
【答案】 1 4.5
【分析】设相邻两个节气 长减少的量为尺,由题意知,,计算求出相邻两个节气 长减少或增加的量;根据立夏到夏至的减少量求解立夏的 长即可.
【详解】解:设相邻两个节气 长减少的量为尺,由题意知,,解得,,
∴相邻两个节气 长减少或增加的量为1尺;
∵,∴立夏的 长为4.5尺;故答案为:1;4.5.
【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意列方程.
19.(2021·浙江金华·中考真题)已知是方程的一个解,则m的值是__________.
【答案】2
【分析】把解代入方程,得6+2m=10,转化为关于m的一元一次方程,求解即可.
【详解】∵是方程的一个解,∴6+2m=10,解得m=2,故答案为:2.
【点睛】本题考查了二元一次方程的解,一元一次方程的解法,灵活运用方程的解的定义,转化为一元一次方程求解是解题的关键.
20.(2021·山东枣庄市·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则的值为______.
【答案】1
【分析】如图(见解析),先根据“每一横行、两条斜对角线上的数字之和都是15”求出图中①和②表示的数,再根据“每一竖行上的数字之和都是15”建立方程,解方程即可得.
【详解】解:如图,由题意,图中①表示的数是,
图中②表示的数是,则,解得,故答案为:1.
【点睛】本题考查了一元一次方程的应用,正确求出图中①和②所表示的数是解题关键.
21.(2022·福建泉州·校考三模)若是关于的方程的解,则__.
【答案】
【分析】把代入方程得到关于a的方程,求解即可.
【详解】把代入方程得:,解得:,故答案为:.
【点睛】本题考查方程的解和解一元一次方程,理解方程的解的意义和解一元一次方程是解题的关键.
22.(2021·浙江台州市·中考真题)解方程组:
【答案】.
【分析】观察方程组中同一未知数的系数特点:x的系数存在倍数关系,而y的系数互为相反数,因此将两方程相加,消去y求出x,再求出y的值,可得到方程组的解.
【详解】解:①+②得:3x=3, 即x=1,把x=1代入①得:y=2,
则方程组的解为 .
【点睛】此题考查解二元一次方程组,解题关键在于利用加减消元法.
23.(2022·湖北荆州·中考真题)已知方程组的解满足,求k的取值范围.
【答案】
【分析】先求出二元一次方程组的解,代入中即可求k;
【详解】解:令①+②得,,
解得:,
将代入①中得,,
解得:,
将,代入得,,
解得:.
【点睛】本题主要考查解二元一次方程组、解一元一次不等式,掌握相关运算法则和方法是解本题的关键.
24.(2022·福建·中考真题)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.
(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?
(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.
【答案】(1)购买绿萝38盆,吊兰8盆 (2)369元
【分析】(1)设购买绿萝盆,购买吊兰盆,根据题意建立方程组,解方程组即可得到答案;
(2)设购买绿萝盆,购买吊兰盆,总费用为,得到关于的一次函数,再建立关于的不等式组,解出的取值范围,从而求得的最小值.
(1)设购买绿萝盆,购买吊兰盆
∵计划购买绿萝和吊兰两种绿植共46盆∴
∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元

得方程组解方程组得
∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;
(2)设购买绿萝盆,购买吊兰吊盆,总费用为
∴,∴
∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍
∴将代入不等式组得
∴∴的最大值为15
∵为一次函数,随值增大而减小
∴时,最小∴∴元
故购买两种绿植最少花费为元.
【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.
25.(2022·湖北恩施·中考真题)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.
(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?
【答案】(1)甲种客车每辆元,乙种客车每辆元
(2)租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元
【分析】(1)可设甲种客车每辆元,乙种客车每辆元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;
(2)设租车费用为元,租用甲种客车辆,根据题意列出不等式组,求出的取值范围,进而列出关于的函数关系式,根据一次函数的性质求解即可.
(1)解:设甲种客车每辆元,乙种客车每辆元,依题意知,
,解得 ,
答:甲种客车每辆元,乙种客车每辆元;
(2)解:设租车费用为元,租用甲种客车 辆,则乙种客车 辆,
,解得:,

,随的增大而减小,
取整数,最大为,
时,费用最低为(元,(辆.
答:租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元.
【点睛】本题考查一次函数的应用,一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
26.(2022·湖南衡阳·中考真题)冰墩墩(Bing Dwen Dwen)、雪容融(Shuey Rhon Rhon)分别是2022年北京冬奥会、冬残奥会的吉样物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?
【答案】(1)冰墩墩进价为72元/个,雪容融进价为64元/个
(2)冰墩墩进货24个,雪容融进货16个时,利润取得最大值为992元
【分析】(1)设冰墩墩进价为元,雪容融进价为元,列二元一次方程组求解;
(2)设冰墩墩进货个,雪容融进货个,利润为元,列出与的函数关系式,并分析的取值范围,从而求出的最大值.
【解析】 (1)解:设冰墩墩进价为元/个,雪容融进价为元/个.
得,解得.∴冰墩墩进价为72元/个,雪容融进价为64元/个.
(2)设冰墩墩进货个,雪容融进货个,利润为元,则,
∵,所以随增大而增大,又因为冰墩墩进货量不能超过雪容融进货量的1.5倍,
得,解得.∴当时,最大,此时,.
答:冰墩墩进货个,雪容融进货个时,获得最大利润,最大利润为元.
【点睛】本题考查二元一次方程组的应用,一次函数的应用,一元一次不等式的应用,熟练掌握相关知识是解题的关键.
27.(2021·湖北襄阳市·中考真题)为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:
进价(元/斤) 售价(元/斤)
鲢鱼 5
草鱼 销量不超过200斤的部分 销量超过200斤的部分
8 7
已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.
(1)求,的值;(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼斤(销售过程中损耗不计).①分别求出每天销售鲢鱼获利(元),销售草鱼获利(元)与的函数关系式,并写出的取值范围;②端午节这天,老李让利销售,将鲢鱼售价每斤降低元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利(元)的最小值不少于320元,求的最大值.
【答案】(1);(2)①;;②0.25
【分析】(1)根据题意列出关于a,b的二元一次方程组,进而即可求解;
(2)①根据利润=(售价-进价)×销售量,列出函数解析式,即可;②根据题意列出W关于x的一次函数关系式,参数为m,结合一次函数的性质,得到关于m的不等式,进而即可求解.
【详解】解:(1)根据题意得:,解得,
(2)①.
当时,即:,;
当时,即:,.
∴,
②由题意得,其中.
∵当时,.不合题意.
∴.∴随的增大而增大.∴当时,的值最小,
由题意得.解得:.∴的最大值为0.25.
【点睛】本题主要考查二元一次方程组以及一次函数的实际应用,根据数量关系;列出方程组以及一次函数解析式,是解题的关键.
【考场演练2】重难点必刷
1.(2022·贵州贵阳·中考真题)在同一平面直角坐标系中,一次函数与的图象如图所示,小星根据图象得到如下结论:
①在一次函数的图象中,的值随着值的增大而增大;
②方程组的解为;③方程的解为;
④当时,.其中结论正确的个数是( )
A.1 B.2 C.3 D.4
【答案】B
【分析】由函数图象经过的象限可判断①,由两个一次函数的交点坐标可判断②,由一次函数与坐标轴的交点坐标可判断③④,从而可得答案.
【详解】解:由一次函数的图象过一,二,四象限,的值随着值的增大而减小;
故①不符合题意;
由图象可得方程组的解为,即方程组的解为;故②符合题意;
由一次函数的图象过 则方程的解为;故③符合题意;
由一次函数的图象过 则当时,.故④不符合题意;
综上:符合题意的有②③,故选B
【点睛】本题考查的是一次函数的性质,一次函数的图象的交点坐标与二元一次方程组的解,一次函数与坐标轴的交点问题,熟练的运用数形结合的方法解题是关键.
2.(2023·浙江杭州·模拟预测)课本上有一例题:求方程组的自然数解,是这样解的:因为x,y为自然数,列表尝试如下:
x 0 1 2 3 4 5 6
y 6 5 4 3 2 1 0
900 1050 1200 1350 1500 1650 1800
可见只有,符合这个方程组,所以方程组的解为
从上述过程可以看出,这个求方程组解的思路是( )
A.先消元,然后转化为一元一次方程,解这个一元一次方程,即可得方程组的解
B.先列出第一个方程的解,再列出第二个方程的解,然后找出两个方程的公共解,即为所求的解
C.先列出第一个方程的解,再将这些解顺次代入第二个方程进行检验,若等式成立,则可得方程组的解
D.先任意给出的一对自然数,假定是解,然后代入两个方程分别检验,两个都成立,则可得方程组的解
【答案】C
【分析】利用二元一次方程组的解的定义判断即可.
【详解】解:从上述过程可以看出,这个求方程组解的思路是,先列出第一个方程的解,再将这些解顺次代入第二个方程进行检验,若等式成立,则可得方程组的解.故选:C.
【点睛】此题考查了二元一次方程组的解,以及一元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
3.(2022·黑龙江齐齐哈尔·统考二模)新冠状病毒传染性非常强,多是通过飞沫,接触,还有气溶胶传播。所以一定要做好个人防护,尽量少外出,更不要聚集,佩戴医用外科口罩是非常有效的个人防护。为了个人防护,小红用40元钱买了A,B两种型号的医用外科口罩(两种型号都买),A型每包6元,B型每包4元,在40元全部用尽的情况下,有几种购买方案( )
A.2种 B.3种 C.4种 D.5种
【答案】B
【分析】解:小红用40元钱买了A型号口罩x包,B两种型号的医用外科口罩y包,根据小红用40元钱买了A,B两种型号的医用外科口罩(两种型号都买)列出二元一次方程,根据A,B两种型号的医用外科口罩都买得到x的取值范围,从而求出二元一次方程的正整数解即可.
【详解】解:小红用40元钱买了A型号口罩x包,B两种型号的医用外科口罩y包,由题意可得:
,解得 ,
,A,B两种型号的医用外科口罩都买, ,
所有购买方案为 , , ,有3种购买方案,故选B.
【点睛】本题主要考查了二元一次方程的正整数解,根据题目中的等量关系列出方程是解题的关键.
4.(2023·浙江·九年级期中)已知关于x,y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值始终互为相反数;③当a=1时,方程组的解也是方程x+y=3﹣a的解;④若z=﹣xy+1,则z存在最小值,且最小值为0.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】①将x=2,y=﹣1代入检验即可做出判断;②将x和y分别用a表示出来,然后求出x+y=3来判断;③将a=1代入方程求出方程的解,代入方程中检验即可;④把x,y代入z=﹣xy+1即可得到结论.
【详解】解:①将x=2,y=﹣1代入方程组得:,
由①得a=﹣1,由②得a=﹣3,故①不符合题意;②解方程,得:x=,y=,
所以x+y=2,故无论a取何值,x,y的值始终互为相反数,故②不符合题意;
③将a=1代入x+y=3﹣a代入方程x+y=2,方程左边=2右边,是方程的解,故③符合题意;
④,
∵>0,∴z存在最小值,且最小值为0.故④符合题意.选:B.
【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
5.(2022·湖南永州市·中考模拟)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为(  )
A.甲 B.乙 C.丙 D.丁
【答案】A
【分析】设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,
①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;
②设在乙处建总仓库,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;
③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;
④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;进行比较运费最少的即可.
【详解】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,
设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,
∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,
设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,
①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;
②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,
则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;
③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;
④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;
由以上可得建在甲处最合适,故选A.
【点睛】本题考查了三元一次方程的应用;设出未知数,求出各个运费是解题的关键.
6.(2022·江苏·中考模拟)若为实数,且,则代数式的最大值是_____.
【答案】26.
【分析】先利用加减消元法求出y,x的值,再把x,y代入代数式,求出z的值,即可解答
【详解】,(1)﹣(2)得,,把代入(1)得,,
则,
当时,的最大值是26,故答案为26.
【点睛】此题考查解三元一次方程,解题关键在于掌握运算法则
7.(2021·北京中考真题)某企业有两条加工相同原材料的生产线.在一天内,生产线共加工吨原材料,加工时间为小时;在一天内,生产线共加工吨原材料,加工时间为小时.第一天,该企业将5吨原材料分配到两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到生产线的吨数与分配到生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给生产线分配了吨原材料,给生产线分配了吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则的值为______________.
【答案】2∶3
【分析】设分配到生产线的吨数为x吨,则分配到B生产线的吨数为(5-x)吨,依题意可得,然后求解即可,由题意可得第二天开工时,由上一问可得方程为,进而求解即可得出答案.
【详解】解:设分配到生产线的吨数为x吨,则分配到B生产线的吨数为(5-x)吨,依题意可得:
,解得:,∴分配到B生产线的吨数为5-2=3(吨),
∴分配到生产线的吨数与分配到生产线的吨数的比为2∶3;
∴第二天开工时,给生产线分配了吨原材料,给生产线分配了吨原材料,
∵加工时间相同,∴,解得:,∴;故答案为,.
【点睛】本题主要考查一元一次方程、二元一次方程的应用及比例的基本性质,熟练掌握一元一次方程的应用及比例的基本性质是解题的关键.
8.(2022·重庆·中考真题)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为______.
【答案】4:3
【分析】设每包麻花的成本为x元,每包米花糖的成本为y元,桃片的销售量为m包,则每包桃片的成本为2x元,米花糖的销售量为3m包,麻花的销售量为2m包,根据三种特产的总利润是总成本的25%列得,计算可得.
【详解】解:设每包麻花的成本为x元,每包米花糖的成本为y元,桃片的销售量为m包,则每包桃片的成本为2x元,米花糖的销售量为3m包,麻花的销售量为2m包,由题意得
,解得3y=4x,
∴y:x=4:3,故答案为:4:3.
【点睛】此题考查了三元一次方程的实际应用,正确理解题意确定等量关系是解题的关键.
9.(2022·重庆·重庆八中校考三模)成成和昊昊分别解答完成了20道数学试题,若答对了一题可以加上一个两位数的分数,答错了一题则要减去另一个两位数的分数,最终,成成得了333分,昊昊得了46分,那么,答错一题时应减去的分数为______分.
【答案】10
【分析】设成成答对了道,昊昊答对了道,答对了一题加上的分数为分,答错一题时应减去的分数为,根据题意列出方程组即可求解,进而根据确定,根据整除,可得或,进而即可求得,代入即可求得的值.
【详解】设成成答对了道,昊昊答对了道,答对了一题加上的分数为a分,答错一题时应减去的分数,根据题意,得①-②得:
代入②得
都是整数,则也是整数,且个位数为0,则或
当时,,当时,,不符合题意,
故答案为:
【点睛】本题考查了二元一次方程组的应用,整除,根据题意列出方程组是解题的关键.
10.(2021·湖南·中考真题)年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向、两个不同需求学生群体的微课视频.已知制作个类微课和个类微课需要4600元成本,制作个类微课和个类微课需要元成本.李老师又把做好的微课出售给某视频播放网站,每个类微课售价元,每个类微课售价元.该团队每天可以制作个类微课或者个类微课,且团队每月制作的类微课数不少于类微课数的倍(注:每月制作的、两类微课的个数均为整数).假设团队每月有天制作微课,其中制作类微课天,制作、两类微课的月利润为元.(1)求团队制作一个类微课和一个类微课的成本分别是多少元?(2)求与之间的函数关系式,并写出的取值范围;(3)每月制作类微课多少个时,该团队月利润最大,最大利润是多少元?
【答案】(1)团队制作一个类微课和一个类微课的成本分别是700元、500元;(2),;(3)每月制作类微课个时,该团队月利润最大,最大利润是元.
【分析】(1)设团队制作一个类微课的成本为元,制作一个类微课的成本为元,由题意得,然后求解即可;(2)由(1)及题意可直接进行求解;(3)由(2)及结合一次函数的性质可直接进行求解.
【详解】解:(1)设团队制作一个类微课的成本为元,制作一个类微课的成本为元,由题意得:
,解得:;
答:团队制作一个类微课和一个类微课的成本分别是700元、500元.
(2)由题意得制作类微课天,则有:

∵团队每月制作的类微课数不少于类微课数的倍,
∴,且,解得:,
(3)由(2)可得:,,∴随的增大而增大,
∵每月制作的、两类微课的个数均为整数,∴为偶数,
∴当时,w取最大,最大值为;
答:每月制作类微课个时,该团队月利润最大,最大利润是元.
【点睛】本题主要考查一次函数、一元一次不等式及二元一次方程组的应用,熟练掌握一次函数、一元一次不等式及二元一次方程组的应用是解题的关键.
11.(2022·河南洛阳·统考二模)已知实数,满足①,②,求和的值.
本题常规的解题思路是将①②两式联立组成方程组,解得,的值.再代入欲求值的代数式得到答案,常规思路运算量较大.其实,仔细观察两个方程未知数,的系数与所求代数式中,的系数之间的关系,本题还可以通过适当的变形整体求得代数式的值.由①②得:,由①②得,这样的解题思想就是通常所说的“整体思想”.
问题解决:(1)已知二元一次方程组,则值为  ,的值为  .
(2)某班组织活动购买奖品,买20支铅笔、3块橡皮、2本日记本共需32元;买39支铅笔、5块橡皮、3本日记本共需58元.则购买5支铅笔、5块橡皮、5本日记本共需多少元?
(3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,则的值为  .
【答案】(1)5,(2)30元(3)
【分析】(1)根据方程组中两个方程的特点,由即可求出的值,即可求出的值;
(2)设1支铅笔元、1块橡皮元、1本日记本元,列出方程组,先求出,再求出,即可得出答案;
(3)根据题意得出方程组,求出,即可求出的值.
【详解】(1)解:由,可得 ,∴,
由,可得 .故答案为:5,;
(2)(2)设1支铅笔元、1块橡皮元、1本日记本元,
由题意,可得,
由,可得 ,∴(元,
答:购买5支铅笔、5块橡皮、5本日记本共需30元;
(3)∵,,∴,
由,可得 ,∴.故答案为:.
【点睛】本题主要考查了二元一次方程组及三元一次方程组的整体求法,理解题意,熟练掌握整体计算方法是解题关键.
12.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?
【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件
【分析】(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m的一元一次不等式组,求解即可得到m的范围,从而根据实际意义确定出m的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.
【详解】解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元.
根据题意,得,解得:,
答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.
(2)根据题意,得,解得:,
∵m为整数,∴m可取5、6、7,∴有三种方案:
方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;
方案三:购买甲种农机具7件,乙种农机具3件.
设总资金为W万元,则,
∵,∴W随m的增大而增大,∴当时,(万元),
∴方案一需要资金最少,最少资金是10万元.
(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,
根据题意,此时,节省的费用为(万元),
降价后的单价分别为:甲种0.8万元,乙种0.3万元,
设节省的资金可购买a台甲种,b台乙种,则:,
由题意,a,b均为非负整数,∴满足条件的解为:或,
∴节省的资金再次购买农机具的方案有两种:
方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.
【点睛】本题考查二元一次方程组、一元一次不等式组以及一次函数的实际应用,找准等量关系,理解一次函数的性质是解题关键.
13.(2023.湖北随州·中考模拟)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
例:将化为分数形式
由于=0.777…,设x=0.777…①
则10x=7.777…②
②﹣①得9x=7,解得x=,于是得=.
同理可得=,=1+=1+,
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(基础训练)(1)=   ,=   ;(2)将化为分数形式,写出推导过程;
(能力提升)(3)=   ,=   ;(注:=0.315315…,=2.01818…)
(探索发现)(4)①试比较与1的大小:   1(填“>”、“<”或“=”)
②若已知=,则=   .(注:=0.285714285714…)
【答案】(1),;(2);(3),;(4)①=;②.
【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节,据此逐一进行解答即可得.
【解析】(1)由题意知、,故答案为、;
(2)=0.232323……,设x=0.232323……①,则100x=23.2323……②,
②﹣①,得:99x=23,解得:x=,∴;
(3)同理:,,故答案为,;
(4)①=1,故答案为=;
②,故答案为.
【点睛】本题考查了规律探索和简单一元一次方程的应用,按照阅读材料的示例找到规律是解题的关键.
14.(2021·贵州黔东南·中考真题)黔东南州某销售公司准备购进A、B两种商品,已知购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元.
(1)求A、B两种商品的进货单价分别是多少元?(2)若该公司购进A商品200件,B商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件A商品运往甲、乙两地的运费分别为20元和25元;每件B商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.①设运往甲地的A商品为(件),投资总运费为(元),请写出与的函数关系式;
②怎样调运A、B两种商品可使投资总费用最少?最少费用是多少元?(投资总费用=购进商品的费用+运费)
【答案】(1)A商品的进货单价为200元,B商品的进货单价为250元;(2)①;②最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地.最小费用为125040元
【分析】(1)设A商品的进货单价为x元,B商品的进货单价为y元,根据购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元列出方程组求解即可;
(2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,根据投资总运费=运往甲、乙两地运费之和列出函数关系式即可;②根据投资总费用=购买商品的费用+总运费,列出函数关系式,由自变量的取值范围是:0≤x≤200,根据函数的性质判断最佳运输方案并求出最低费用.
【详解】解:(1)设A商品的进货单价为x元,B商品的进货单价为y元,
根据题意,得,解得:,
答:A商品的进货单价为200元,B商品的进货单价为250元;
(2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,
运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,
则y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,
∴y与x的函数关系式为y=4x+10040;
②投资总费用w=200×200+300×250+4x+10040=4x+125040,自变量的取值范围是:0≤x≤200,
∵k=4>0,∴y随x增大而增大.当x=0时,w取得最小值,w最小=125040(元),
∴最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地,最小费用为125040元.
答:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地总费用最小,最小费用125040元.
【点睛】本题考查了一次函数的应用和二元一次方程组的应用,关键是根据投资总费用=购进商品的费用+运费列出函数关系式.
15.(2020·江苏镇江市·中考真题)(算一算)如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为   ,AC长等于   ;
(找一找)如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点  是这个数轴的原点;
(画一画)如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);
(用一用)学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?
爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.
①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;
②写出a、m的数量关系:   .
【答案】(1)5,8;(2)N;(3)图见解析;(4)①+(m+2b)的实际意义:2分钟后,校门口需要进入学校的学生人数,图见解析;②m=4a.
【分析】(1)根据数轴上点A对应﹣3,点B对应1,求得AB的长,进而根据AB=BC可求得AC的长以及点C表示的数;(2)可设原点为O,根据条件可求得AB中点表示的数以及线段AB的长度,根据AB=2,可得AQ=BQ=1,结合OQ的长度即可确定N为数轴的原点;(3)设AB的中点为M,先求得AB的长度,得到AM=BM=n,根据线段垂直平分线的作法作图即可;(4)①根据每分钟进校人数为b,每个通道每分钟进入人数为a,列方程组,根据m+2b=OF,m+4b=12a,即可画出F,G点,其中m+2b表示两分钟后,校门口需要进入学校的学生人数;②解①中的方程组,即可得到m=4a.
【详解】解:(1)【算一算】:记原点为O,
∵AB=1﹣(﹣3)=4,∴AB=BC=4,∴OC=OB+BC=5,AC=2AB=8.
所以点C表示的数为5,AC长等于8.故答案为:5,8;
(2)【找一找】:记原点为O,∵AB=+1﹣(﹣1)=2,∴AQ=BQ=1,
∴OQ=OB﹣BQ=+1﹣1=,∴N为原点.故答案为:N.
(3)【画一画】:记原点为O,由AB=c+n﹣(c﹣n)=2n,作AB的中点M,
得AM=BM=n,以点O为圆心,AM=n长为半径作弧交数轴的正半轴于点E,则点E即为所求;
(4)【用一用】:在数轴上画出点F,G;2分钟后,校门口需要进入学校的学生人数为:m=4a.
∵4分钟内开放3个通道可使学生全部进校,∴m+4b=3×a×4,即m+4b=12a(Ⅰ);
∵2分钟内开放4个通道可使学生全部进校,∴m+2b=4×a×2,即m+2b=8a(Ⅱ);
①以O为圆心,OB长为半径作弧交数轴的正半轴于点F,则点F即为所求.
作OB的中点E,则OE=BE=4a,在数轴负半轴上用圆规截取OG=3OE=12a,则点G即为所求.
+(m+2b)的实际意义:2分钟后,校门口需要进入学校的学生人数;
②方程(Ⅱ)×2﹣方程(Ⅰ)得:m=4a.故答案为:m=4a.
【点睛】本题考查二元一次方程组的应用,实数与数轴,作图.解决本题的关键是根据题意找到等量关系.
16.(2022·辽宁营口·中考真题)某文具店最近有A,B两款纪念册比较畅销,该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:
售价(元/本) … 22 23 24 25 …
每天销售量(本) … 80 78 76 74 …
(1)求A,B两款纪念册每本的进价分别为多少元;
(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元.
①直接写出B款纪念册每天的销售量(用含m的代数式表示);
②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?
【答案】(1)A,B两款纪念册每本的进价分别为20元和14元;
(2)①B款纪念册销售量为(80-2m)本;②当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.
【分析】(1)设A,B两款纪念册每本的进价分别为a元和b元,根据题意列出二元一次方程组,求解即可;
(2)①设A款纪念册每本降价m元,根据这两款纪念册每天销售总数不变,则B款纪念册销售量为(80-2m)本;
②先利用待定系数法求得B款纪念册每天的销售量与售价之间的一次函数关系式,再根据每周的利润=每本的利润×每周的销售数量,再根据二次函数的性质可得答案.
(1)解:设A,B两款纪念册每本的进价分别为a元和b元,
依题意得,解得,
答:A,B两款纪念册每本的进价分别为20元和14元;
(2)解:①设A款纪念册每本降价m元,
则A款纪念册销售量为(40+2m)本,售价为(32-m)元,则每册利润为32-m-20=12-m(元),
∵这两款纪念册每天销售总数不变,
∴B款纪念册销售量为(80-2m)本;
②设B款纪念册每天的销售量与售价之间的一次函数关系式为y=kx+n,
∴,解得,
∴B款纪念册每天的销售量与售价之间的一次函数关系式为y=-2x+124,
由①得:B款纪念册销售量为(80-2m)本,
售价为80-2m =-2x+124,即x=22+m(元),则每本利润为22+m-14=8+m(元),
设该店每天所获利润为w元,
则w=(40+2m)(12-m)+ (80-2m)(8+m)=-4m2+48m+1120=-4(m-6)2+1264,
∵-4<0,∴当m=6时,w有最大值,最大值为1264元,
此时A款纪念册售价为32-6=26(元),
答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.
【点睛】本题考查二元一次方程组、一次函数及二次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.
17.(2022·广西玉林·中考真题)我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨:因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元.(1)求两次购买龙眼各是多少吨?(2)公司把两次购买的龙眼加工成桂圆肉和龙眼千,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?
【答案】(1)第一次购买了7吨龙眼,第二次购买了14吨龙眼
(2)至少要把15吨龙眼加工成桂圆肉
【分析】(1)设第一次购买龙眼x吨,第二次购买龙眼y吨,根据题意列出二元一次方程组即可求解;(2)设将a吨龙眼加工成桂圆肉,则(21-a)吨龙眼加工成龙眼干,则总的销售额为:,则根据题意有不等式,解该不等式即可求解.
(1)设第一次购买龙眼x吨,第二次购买龙眼y吨,根据题意有:
,解得:,
即第一次购买龙眼7吨,第二次购买龙眼14吨;
(2)设将a吨龙眼加工成桂圆肉,则(21-a)吨龙眼加工成龙眼干,
则总的销售额为:,
则根据题意有:,解得:,即至少要把15吨龙眼加工成桂圆肉.
【点睛】本题考查了二元一次方程组即一元一次不等式的应用,明确题意列出二元一次方程组即一元一次不等式是解答本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题04 一次方程(组)
【考场演练1】热点必刷
1.(2022·浙江金华·统考一模)解方程, 以下去分母正确的是 ( ).
A. B. C. D.
2.(2022·南充·统考二模)已知x、y满足方程组,且x与y互为相反数,则m的值为( )
A. B. C. D.
3.(2022·四川南充·中考真题)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为( )
A. B. C. D.
4.(2022·江苏扬州·中考真题)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有只,兔有只,那么可列方程组为( )
A. B. C. D.
5.(2022·黑龙江齐齐哈尔·中考真题)端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )
A.2种 B.3种 C.4种 D.5种
6.(2022·贵州铜仁·中考真题)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )
A.14 B.15 C.16 D.17
4.(2022·浙江·九年级期末)已知,都是关于,的方程的一个解,则下列对于:,的关系判断正确的是( )
A. B. C. D.
6.(2022·浙江杭州·中考真题)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则( )
A. B. C. D.
7.(2022·浙江丽水·三模)若方程组,设,,则代数式 的值为(  )
A. B. C. D.
8.(2021·安徽中考真题)设a,b,c为互不相等的实数,且,则下列结论正确的是( )
A. B. C. D.
9.(2022·河北·中考真题)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是( )
A.依题意 B.依题意
C.该象的重量是5040斤 D.每块条形石的重量是260斤
10.(2022·浙江·九年级中考模拟)下列方程组中是二元一次方程组的是( )
A. B. C. D.
11.(2020·浙江绍兴市·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地(  )
A.120km B.140km C.160km D.180km
12.(2021·山东枣庄市·中考真题)已知,满足方程组,则的值为______.
13.(2022·广西贺州·中考真题)若实数m,n满足,则__________.
14.(2022·江苏无锡·中考真题)二元一次方程组的解为________.
15.(2022·贵州黔东南·中考真题)若,则的值是________.
16.(2022·吉林·中考真题)《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛.根据题意,可列方程组为__________.
17.(2022·湖北随州·中考真题)已知二元一次方程组,则的值为______.
18.(2022·北京东城·统考一模)我国古代天文学和数学著作《周髀算经》中提到:一年有二十四个节气,每个节气的 (ɡuǐ)长损益相同( 是按照日影测定时刻的仪器, 长即为所测量影子的长度),二十四节气如图所示.从冬至到夏至 长逐渐变小,从夏至到冬至 长逐渐变大,相邻两个节气 长减少或增加的量均相同,周而复始.若冬至的 长为13.5尺,夏至的 长为1.5尺,则相邻两个节气 长减少或增加的量为________尺,立夏的 长为_______尺.
19.(2021·浙江金华·中考真题)已知是方程的一个解,则m的值是__________.
20.(2021·山东枣庄市·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则的值为______.
21.(2022·福建泉州·校考三模)若是关于的方程的解,则__.
22.(2021·浙江台州市·中考真题)解方程组:
23.(2022·湖北荆州·中考真题)已知方程组的解满足,求k的取值范围.
24.(2022·福建·中考真题)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.
(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?
(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.
25.(2022·湖北恩施·中考真题)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.
(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?
26.(2022·湖南衡阳·中考真题)冰墩墩(Bing Dwen Dwen)、雪容融(Shuey Rhon Rhon)分别是2022年北京冬奥会、冬残奥会的吉样物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?
27.(2021·湖北襄阳市·中考真题)为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:
进价(元/斤) 售价(元/斤)
鲢鱼 5
草鱼 销量不超过200斤的部分 销量超过200斤的部分
8 7
已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.
(1)求,的值;(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼斤(销售过程中损耗不计).①分别求出每天销售鲢鱼获利(元),销售草鱼获利(元)与的函数关系式,并写出的取值范围;②端午节这天,老李让利销售,将鲢鱼售价每斤降低元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利(元)的最小值不少于320元,求的最大值.
【考场演练2】重难点必刷
1.(2022·贵州贵阳·中考真题)在同一平面直角坐标系中,一次函数与的图象如图所示,小星根据图象得到如下结论:
①在一次函数的图象中,的值随着值的增大而增大;
②方程组的解为;③方程的解为;
④当时,.其中结论正确的个数是( )
A.1 B.2 C.3 D.4
2.(2023·浙江杭州·模拟预测)课本上有一例题:求方程组的自然数解,是这样解的:因为x,y为自然数,列表尝试如下:
x 0 1 2 3 4 5 6
y 6 5 4 3 2 1 0
900 1050 1200 1350 1500 1650 1800
可见只有,符合这个方程组,所以方程组的解为
从上述过程可以看出,这个求方程组解的思路是( )
A.先消元,然后转化为一元一次方程,解这个一元一次方程,即可得方程组的解
B.先列出第一个方程的解,再列出第二个方程的解,然后找出两个方程的公共解,即为所求的解
C.先列出第一个方程的解,再将这些解顺次代入第二个方程进行检验,若等式成立,则可得方程组的解
D.先任意给出的一对自然数,假定是解,然后代入两个方程分别检验,两个都成立,则可得方程组的解
3.(2022·黑龙江齐齐哈尔·统考二模)新冠状病毒传染性非常强,多是通过飞沫,接触,还有气溶胶传播。所以一定要做好个人防护,尽量少外出,更不要聚集,佩戴医用外科口罩是非常有效的个人防护。为了个人防护,小红用40元钱买了A,B两种型号的医用外科口罩(两种型号都买),A型每包6元,B型每包4元,在40元全部用尽的情况下,有几种购买方案( )
A.2种 B.3种 C.4种 D.5种
4.(2023·浙江·九年级期中)已知关于x,y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值始终互为相反数;③当a=1时,方程组的解也是方程x+y=3﹣a的解;④若z=﹣xy+1,则z存在最小值,且最小值为0.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
5.(2022·湖南永州市·中考模拟)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为(  )
A.甲 B.乙 C.丙 D.丁
6.(2022·江苏·中考模拟)若为实数,且,则代数式的最大值是_____.
7.(2021·北京中考真题)某企业有两条加工相同原材料的生产线.在一天内,生产线共加工吨原材料,加工时间为小时;在一天内,生产线共加工吨原材料,加工时间为小时.第一天,该企业将5吨原材料分配到两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到生产线的吨数与分配到生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给生产线分配了吨原材料,给生产线分配了吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则的值为______________.
8.(2022·重庆·中考真题)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为______.
9.(2022·重庆·重庆八中校考三模)成成和昊昊分别解答完成了20道数学试题,若答对了一题可以加上一个两位数的分数,答错了一题则要减去另一个两位数的分数,最终,成成得了333分,昊昊得了46分,那么,答错一题时应减去的分数为______分.
10.(2021·湖南·中考真题)年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向、两个不同需求学生群体的微课视频.已知制作个类微课和个类微课需要4600元成本,制作个类微课和个类微课需要元成本.李老师又把做好的微课出售给某视频播放网站,每个类微课售价元,每个类微课售价元.该团队每天可以制作个类微课或者个类微课,且团队每月制作的类微课数不少于类微课数的倍(注:每月制作的、两类微课的个数均为整数).假设团队每月有天制作微课,其中制作类微课天,制作、两类微课的月利润为元.(1)求团队制作一个类微课和一个类微课的成本分别是多少元?(2)求与之间的函数关系式,并写出的取值范围;(3)每月制作类微课多少个时,该团队月利润最大,最大利润是多少元?
11.(2022·河南洛阳·统考二模)已知实数,满足①,②,求和的值.
本题常规的解题思路是将①②两式联立组成方程组,解得,的值.再代入欲求值的代数式得到答案,常规思路运算量较大.其实,仔细观察两个方程未知数,的系数与所求代数式中,的系数之间的关系,本题还可以通过适当的变形整体求得代数式的值.由①②得:,由①②得,这样的解题思想就是通常所说的“整体思想”.
问题解决:(1)已知二元一次方程组,则值为  ,的值为  .
(2)某班组织活动购买奖品,买20支铅笔、3块橡皮、2本日记本共需32元;买39支铅笔、5块橡皮、3本日记本共需58元.则购买5支铅笔、5块橡皮、5本日记本共需多少元?
(3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,则的值为  .
12.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?
13.(2023.湖北随州·中考模拟)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
例:将化为分数形式
由于=0.777…,设x=0.777…①
则10x=7.777…②
②﹣①得9x=7,解得x=,于是得=.
同理可得=,=1+=1+,
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(基础训练)(1)=   ,=   ;(2)将化为分数形式,写出推导过程;
(能力提升)(3)=   ,=   ;(注:=0.315315…,=2.01818…)
(探索发现)(4)①试比较与1的大小:   1(填“>”、“<”或“=”)
②若已知=,则=   .(注:=0.285714285714…)
14.(2021·贵州黔东南·中考真题)黔东南州某销售公司准备购进A、B两种商品,已知购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元.
(1)求A、B两种商品的进货单价分别是多少元?(2)若该公司购进A商品200件,B商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件A商品运往甲、乙两地的运费分别为20元和25元;每件B商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.①设运往甲地的A商品为(件),投资总运费为(元),请写出与的函数关系式;
②怎样调运A、B两种商品可使投资总费用最少?最少费用是多少元?(投资总费用=购进商品的费用+运费)
15.(2020·江苏镇江市·中考真题)(算一算)如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为   ,AC长等于   ;
(找一找)如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点  是这个数轴的原点;
(画一画)如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);
(用一用)学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?
爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.
①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;
②写出a、m的数量关系:   .
16.(2022·辽宁营口·中考真题)某文具店最近有A,B两款纪念册比较畅销,该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:
售价(元/本) … 22 23 24 25 …
每天销售量(本) … 80 78 76 74 …
(1)求A,B两款纪念册每本的进价分别为多少元;
(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元.
①直接写出B款纪念册每天的销售量(用含m的代数式表示);
②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?
17.(2022·广西玉林·中考真题)我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨:因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元.(1)求两次购买龙眼各是多少吨?(2)公司把两次购买的龙眼加工成桂圆肉和龙眼千,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表