资源简介 (共12张PPT)量子限制效应量子限制效应(quantum confinement effect)量子阱宽度小于电子运动的Bloch波长,电子在垂直异质结结面的方向(z方向)的运动约束到一系列分裂的能级。设势能有效质量方程分析(前提:势能在空间缓变,即要求阱宽远大于晶体的晶格常数)(3-2)(3-1)2x,y平面中的运动是有效质量为m* 的自由电子运动,而z方向上的运动是在一维量子阱中的运动,通常具有量子化的束缚能。3共振隧穿效应当外加电压使量子阱中能级与外电极费米能级或邻近阱中的电子态一致时,电子可穿过势垒到邻近阱中所对应的能级,隧穿几率几乎为1。而与相近邻阱中的能级不一致时隧穿几率为零。一维双势垒超晶格结构的隧穿特性4实验测量的是隧穿电流与电极上外加电压的关系。当外加电压变化到量子阱中的束缚态能级与发射极电子的费米能级对齐时,电流达到极大,dI/dV=0。实验测得的(dI/dV)-V曲线上发现有两个极值dI/dV=0,说明量子阱中有两个束缚能级。张立纲等首先在GaAs/AlxGa1-xAs双势垒结构中观察到共振隧穿现象。5超晶格中的微带形成超晶格中的微带(miniband)和态密度布洛赫振荡万尼尔-斯塔克效应超晶格势垒区较薄时,阱中量子化的孤立能级相互耦合而成微带结构。微带有载流子公有化运动。超晶格布里渊区小,带宽小,呈现一系列新现象:6Ⅲ类超晶格:其中一种材料具有零带隙。组成超晶格后,由于它的电子有效质量为负,将形成界面态。典型的例子是HgTe/CdTe超晶格。78(2)掺杂调制超晶格在同一种半导体中,用交替地改变掺杂类型的方法做成的新型人造周期性半导体结构的材料。优点:(1)任何一种半导体材料只要很好控制掺杂类型都可以做成超晶格。(2)多层结构的完整性非常好,由于掺杂量一般较小,所以杂质引起的晶格畸变也较小。因此,掺杂超晶格中没有像组分超晶格那样明显的异质界面。(3) 掺杂超晶格的有效能隙可以具有从零到未调制的基体材料能量隙之间的任何值,取决于对各分层厚度和掺杂浓度的选择。9(2)掺杂调制超晶格利用电离杂质中心产生的静电势在晶体中形成周期性变化的势,例如n-i-n-i结构超晶格。10(3)应变超晶格初期研究超晶格材料时,除了A1xGa1-xAs/GaAs体系以外,对其他物质形成的超晶格的研究工作不多。原因:晶格常数相差很大,会引起薄膜之间产生失配位错而得不到良好质量的超晶格材料。解决方法:当多层薄膜的厚度十分薄时,在晶体生长时反而不容易产生位错。即,在弹性形变限度之内的超薄膜中,晶格本身发生应变而阻止缺陷的产生。因此,巧妙地利用这种性质,可制备出晶格常数相差较大的两种材料所形成的应变超晶格。SiGe/Si是典型应变超晶格材料,随着能带结构的变化,载流子的有效质量可能变小,可提高载流子的迁移率,可做出比一般Si器件更高速工作的电子器件。11(4)多维超晶格一维超晶格与体单晶比较具有许多不同的性质,这些特点来源于它把电子和空穴限制在二维平面内而产生量子力学效应。进一步发展这种思想,把载流子再限制在低维空间中,可能会出现更多的新的光电特性。用MBE法生长多量子阱结构或单量子阱结构,通过光刻技术和化学腐蚀制成量子线、量子点。12 展开更多...... 收起↑ 资源预览