资源简介 (共14张PPT)振动习题课件15-1 质量为m =5.88kg的物体,挂在弹簧上,让它在竖直方向上作自由振动。在无阻尼情况下,其振动周期为T =0.4πs;在阻力与物体运动速度成正比的某一介质中,它的振动周期为T=0.5πs;求当速度为0.01m/s时,物体在阻尼介质中所受的阻力。返回结束mkmΔlmbACBA→C 应用功能原理12mglxmmΔ2()+=v12kx212k()lΔ2=2gxm+kx2()lΔ22gmlΔmkm=22vglxmΔ()+kx2()lΔ2mkm返回结束2v=2gxm+kx2()lΔ22gmlΔmkm2gm=A()lΔ22gmlΔkmC==2×2=4kmB==100=1001=100×(0.07)24×0.07=0.21令:dxdt22v==x+x2ABC返回结束dxdt<0由于dxdt=x+x2ABCdtdx=x+x2ABCdxx+x2ABC=òlΔbt=dtòt0dxdt22v==x+x2ABC返回结束lΔbBBCxBA21sin=4A+2arclΔBBCBA21sin4A+2arc=BBCBA21sin4A+2arcbdxx+x2ABC=òlΔbt返回结束lΔBBCBA21sin2A+2arct =BBCBA21sin4A+2arcb4=AB=100C=0.21Δl =0.07b =0.030.214sin442arc=××2×100×0.07100()101sinarc0.214442××2×100×0.03100()101arc sin(1)-arc sin(-1)=101=1012π2π()π=10=0.314s返回结束=3.53(kg.s-1)=2×3×5.88=3(s-1 )ωβT20=2π2T20=2πT22π=2π0.4π22π0.5π2=2516=rβ2mF = r v=3.5×1.0×10-2 = 0.353N2ωβT20=2π2ωβT20=2π2解:返回结束15-2 一摆在空中振动,某时刻,振幅为 A0= 0.03m,经过t1=10s后,振幅变为 A1=0.01m,问:由振幅为 A0时起,经多长时间,其振幅减为 A2=0.003m ?返回结束=20.9(s)=0.110βAe0=At0=lnAlnAβt1=ln100.030.01110=lnβtAA1120=lnβtAA2=10.11ln0.030.003解:返回结束15-3 试用最简单的方法求出下列两组简谐振动合成后所得合振动的振幅:第一组:第二组:0.05cos(3t+π/3)mx1=0.05cos(3t+π/3)mx1=0.05cos(3t+7π/3)mx2=0.05cos(3t+4π/3)mx2=返回结束==3π73ππΦΔ2==3π43ππΦΔA = A1+A2= 0.05 + 0.05 =0.10(m)A = A1-A2= 0解:0.05cos(3t+π/3)mx1=0.05cos(3t+7π/3)mx2=(1)0.05cos(3t+π/3)mx1=0.05cos(3t+4π/3)mx2=(2)返回结束15-4 一质点同时参与两个在同一直线上的简谐振动:试求其合振动的振幅和初相位(式中x以m计, t 以s计) 。0.04cos(2t+π/6)mx1=0.03cos(2t-5π/6)mx2=返回结束=0.01mφ2A1A2cos()++=A22A1A22φ1=(0.04)2+(0.04)2+2×0.04×0.03cos(-π)arc tg+=φ1A1sinφ2A2sinφ1A1cosφ2A2cos+φ()+arc tg=230.04×210.04×210.04×()+0.04×23()3arc tg=1=π6解:返回结束 展开更多...... 收起↑ 资源预览