资源简介 2023年中考数学第一轮复习模块六 圆专题1 与圆有关的概念及性质圆 圆的有关概念及性质 (1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,圆既是轴对称图形也是中心对称图形. (2)圆具有对称性和旋转不变性. (3)不共线的三点确定一个圆. (4)圆上各点到圆心的距离都等于半径. (5)圆上任意两点间的部分叫做弧,大于半圆周的弧称为优弧,小于半圆周的弧称为劣弧. (6)连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.弧、弦、圆心角的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论 在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,则它们所对应的其余各组量也分别相等垂径定理 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧. 推论 推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧. ③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 推论2:圆的两条平行弦所夹的弧相等. 与圆有关的角及其性质 圆心角 顶点在圆心,角的两边和圆相交的角叫做圆心角.圆周角 顶点在圆上且角的两边和圆相交的角叫做圆周角.圆周角定理 定理 一条弧所对的圆周角等于它所对的圆心角的一半. 推论 ① 同弧或等弧所对的圆周角相等. ② 半圆(或直径)所对的圆周角是直径,90°的圆周角所对的弦是圆的直径. ③ 圆内接四边形的对角互补. 题型一、垂径定理1.(2022·四川自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦长20厘米,弓形高为2厘米,则镜面半径为____________厘米.中小学教育资源及组卷应用平台21世纪教育网(www.21cnjy.com)2.(2022·湖北鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A.10cm B.15cm C.20cm D.24cm3.(2022·湖北宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为.拱高(弧的中点到弦的距离).连接.(1)直接判断与的数量关系;(2)求这座石拱桥主桥拱的半径(精确到).题型二、圆周角定理及其推论1.(2022·浙江嘉兴·中考真题)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为( )A.55° B.65° C.75° D.130°2.(2022·山东滨州·中考真题)如图,在中,弦相交于点P,若,则的大小为( )A. B. C. D.3.(2022·山东聊城)如图,AB,CD是的弦,延长AB,CD相交于点P.已知,,则的度数是( )A.30° B.25° C.20° D.10°4.(2022·辽宁锦州)如图,线段是半圆O的直径。分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线,交半圆O于点C,交于点E,连接,,若,则的长是( )A. B.4 C.6 D.5.(2022·广西贵港)如图,⊙是的外接圆,是⊙的直径,点P在⊙上,若,则的度数是( )A. B. C. D.6.(2022·辽宁营口)如图,点A,B,C,D在上,,则的长为( )A. B.8 C. D.47.(2022·广西梧州)如图,是的外接圆,且,在弧AB上取点D(不与点A,B重合),连接,则的度数是( )A.60° B.62° C.72° D.73°8.(2022·江苏苏州)如图,AB是的直径,弦CD交AB于点E,连接AC,AD.若,则______°9.(2022·辽宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为___________.10.(2022·内蒙古通辽)如图,是的外接圆,为直径,若,,点从点出发,在内运动且始终保持,当,两点距离最小时,动点的运动路径长为______.11.(2022·广东)如图,四边形内接于,为的直径,.(1)试判断的形状,并给出证明;(2)若,,求的长度.12.(2022·江苏无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证;(2)当时,求CE的长.13.(2022·四川成都)如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:;(2)若,,求及的长.题型三、与圆有关的性质综合1.(2022·内蒙古包头)如图,是的两条直径,E是劣弧的中点,连接,.若,则的度数为( )A. B. C. D.2.(2022·浙江湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是______.3.(2022·四川凉山)如图,⊙O的直径AB经过弦CD的中点H,若cos∠CDB=,BD=5,则⊙O的半径为_______.4.(2022·湖北十堰)如图,是等边的外接圆,点是弧上一动点(不与,重合),下列结论:①;②;③当最长时,;④,其中一定正确的结论有( )A.1个 B.2个 C.3个 D.4个5.(2022·四川德阳)如图,点是的内心,的延长线和的外接圆相交于点,与相交于点,则下列结论:①;②若,则;③若点为的中点,则;④.其中一定正确的个数是( )A.1 B.2 C.3 D.46.(2022·山东临沂)如图,AB是的切线,B为切点,直线AO交于C,D两点,连接BC,BD,过圆心О作BC的平行线,分别交AB的延长线、及BD于点E,F,G.(1)求证:;(2)若F是OE的中点,的半径为3,求阴影部分的面积.7.(2022·福建)如图,△ABC内接于⊙O,交⊙O于点D,交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).8.(2022·湖北武汉)如图,正方形内接于,点E为的中点,连接交于点F,延长交于点G,连接.(1)求证:;(2)若.求和的长.2023年中考数学第一轮复习模块六 圆专题1 与圆有关的概念及性质圆 圆的有关概念及性质 (1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,圆既是轴对称图形也是中心对称图形. (2)圆具有对称性和旋转不变性. (3)不共线的三点确定一个圆. (4)圆上各点到圆心的距离都等于半径. (5)圆上任意两点间的部分叫做弧,大于半圆周的弧称为优弧,小于半圆周的弧称为劣弧. (6)连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.弧、弦、圆心角的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论 在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,则它们所对应的其余各组量也分别相等垂径定理 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧. 推论 推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧. ③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 推论2:圆的两条平行弦所夹的弧相等. 与圆有关的角及其性质 圆心角 顶点在圆心,角的两边和圆相交的角叫做圆心角.圆周角 顶点在圆上且角的两边和圆相交的角叫做圆周角.圆周角定理 定理 一条弧所对的圆周角等于它所对的圆心角的一半. 推论 ① 同弧或等弧所对的圆周角相等. ② 半圆(或直径)所对的圆周角是直径,90°的圆周角所对的弦是圆的直径. ③ 圆内接四边形的对角互补. 题型一、垂径定理1.(2022·四川自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦长20厘米,弓形高为2厘米,则镜面半径为____________厘米.【答案】26【分析】令圆O的半径为OB=r,则OC=r-2,根据勾股定理求出OC2+BC2=OB2,进而求出半径.【详解】解:如图,由题意,得OD垂直平分AB,∴BC=10厘米,令圆O的半径为OB=r,则OC=r-2,在Rt△BOC中OC2+BC2=OB2,∴(r-2)2+102=r2,解得r=26.故答案为:26.【点睛】本题考查垂径定理和勾股定理求线段长,熟练地掌握圆的基本性质是解决问题的关键.2.(2022·湖北鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A.10cm B.15cm C.20cm D.24cm【答案】C【分析】连接OA,OE,设OE与AB交于点P,根据,,得四边形ABDC是矩形,根据CD与切于点E,OE为的半径得,,即,,根据边之间的关系得,,在,由勾股定理得,,进行计算可得,即可得这种铁球的直径.【详解】解:如图所示,连接OA,OE,设OE与AB交于点P,∵,,,∴四边形ABDC是矩形,∵CD与切于点E,OE为的半径,∴,,∴,,∵AB=CD=16cm,∴,∵,在,由勾股定理得,解得,,则这种铁球的直径=,故选C.【点睛】本题考查了切线的性质,垂径定理,勾股定理,解题的关键是掌握这些知识点.3.(2022·湖北宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为.拱高(弧的中点到弦的距离).连接.(1)直接判断与的数量关系;(2)求这座石拱桥主桥拱的半径(精确到).【答案】(1)(2)这座石拱桥主桥拱半径约为【分析】(1)根据垂径定理即可得出结论;(2)设主桥拱半径为,在中,根据勾股定理列出方程,即可得出答案.(1)解:∵半径,∴.故答案为:.(2)设主桥拱半径为,由题意可知,,∴,,在中,由勾股定理,得,即,解得,∴,因此,这座石拱桥主桥拱半径约为.【点睛】此题考查垂径定理和勾股定理,是重要考点,根据题意利用勾股定理列出方程是解题关键.题型二、圆周角定理及其推论1.(2022·浙江嘉兴·中考真题)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为( )A.55° B.65° C.75° D.130°【答案】B【分析】利用圆周角直接可得答案.【详解】解: ∠BOC=130°,点A在上, 故选B【点睛】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.2.(2022·山东滨州·中考真题)如图,在中,弦相交于点P,若,则的大小为( )A. B. C. D.【答案】A【分析】根据三角形的外角的性质可得,求得,再根据同弧所对的圆周角相等,即可得到答案.【详解】,,故选:A.【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.3.(2022·山东聊城)如图,AB,CD是的弦,延长AB,CD相交于点P.已知,,则的度数是( )A.30° B.25° C.20° D.10°【答案】C【分析】如图,连接OB,OD,AC,先求解,再求解,从而可得,再利用周角的含义可得,从而可得答案.【详解】解:如图,连接OB,OD,AC,∵,∴,∵,∴,∵,,∴,,∴,∴,∴.∴的度数20°.故选:C.【点睛】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.4.(2022·辽宁锦州)如图,线段是半圆O的直径。分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线,交半圆O于点C,交于点E,连接,,若,则的长是( )A. B.4 C.6 D.【答案】A【分析】根据作图知CE垂直平分AC,即可得,,根据圆的半径得,,根据圆周角的推论得,根据勾股定理即可得.【详解】解:根据作图知CE垂直平分AC,∴,,∴,∴,即,∵线段AB是半圆O的直径,∴,在中,根据勾股定理得,,故选A.【点睛】本题考查了圆,勾股定理,圆周角推论,解题的关键是掌握这些知识点.5.(2022·广西贵港)如图,⊙是的外接圆,是⊙的直径,点P在⊙上,若,则的度数是( )A. B. C. D.【答案】C【分析】根据圆周角定理得到,,然后利用互余计算出∠A的度数,从而得到的度数.【详解】解:∵AB是⊙O的直径,∴,∴∴,故选:C.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.(2022·辽宁营口)如图,点A,B,C,D在上,,则的长为( )A. B.8 C. D.4【答案】A【分析】连接,根据可得为的直径,又根据得到,故在直角三角形中,利用特殊角的三角函数即可求出.【详解】解:连接,,,为的直径,,,在中,,..故选:A.【点睛】本题主要考查圆周角定理,解三角形,解题的关键是掌握公式、定理。7.(2022·广西梧州)如图,是的外接圆,且,在弧AB上取点D(不与点A,B重合),连接,则的度数是( )A.60° B.62° C.72° D.73°【答案】C【分析】连接CD,根据等腰三角形的性质可求∠ACB的度数,然后根据圆周定理求出∠BAD=∠BCD,∠ABD=∠ACD,从而可求出的度数.【详解】解:连接CD,则∠BAD=∠BCD,∠ABD=∠ACD,∵AB=AC,∴∠ABC=∠ACB,又∠BAC=36°,∴∠ACB=,∴∠BAD+∠ABD=∠BCD+∠ACD=∠ACB=72°.故选:C.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,根据圆周角定理得出∠BAD=∠BCD,∠ABD=∠ACD是解题的关键.8.(2022·江苏苏州)如图,AB是的直径,弦CD交AB于点E,连接AC,AD.若,则______°【答案】62【分析】连接,根据直径所对的圆周角是90°,可得,由,可得,进而可得.【详解】解:连接,∵AB是的直径,∴,,,故答案为:62【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.9.(2022·辽宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为___________.【答案】40°##40度【分析】首先利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,然后利用直径所对的圆周角是直角确定∠ACB=90°,然后利用直角三角形的两个锐角互余求得答案即可.【详解】解:∵四边形ABCD内接与⊙O,∠ADC=130°,∴∠B=180°-∠ADC=180°-130°=50°,∵AB为直径,∴∠ACB=90°,∴∠CAB=90°-∠B=90°-50°=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.10.(2022·内蒙古通辽)如图,是的外接圆,为直径,若,,点从点出发,在内运动且始终保持,当,两点距离最小时,动点的运动路径长为______.【答案】【分析】根据题中的条件可先确定点P的运动轨迹,然后根据三角形三边关系确定CP的长最小时点P的位置,进而求出点P的运动路径长.【详解】解:为的直径,∴∴点P在以AB为直径的圆上运动,且在△ABC的内部,如图,记以AB为直径的圆的圆心为,连接交于点,连接∴当点三点共线时,即点P在点处时,CP有最小值,∵∴在中,∴∠∴∴两点距离最小时,点P的运动路径长为【点睛】本题主要考查了直径所对圆周角是直角,弧长公式,由锐角正切值求角度,确定点P的路径是解答本题的关键.11.(2022·广东)如图,四边形内接于,为的直径,.(1)试判断的形状,并给出证明;(2)若,,求的长度.【答案】(1)△ABC是等腰直角三角形;证明见解析;(2);【分析】(1)根据圆周角定理可得∠ABC=90°,由∠ADB=∠CDB根据等弧对等角可得∠ACB=∠CAB,即可证明;(2)Rt△ABC中由勾股定理可得AC,Rt△ADC中由勾股定理求得CD即可;(1)证明:∵AC是圆的直径,则∠ABC=∠ADC=90°,∵∠ADB=∠CDB,∠ADB=∠ACB,∠CDB=∠CAB,∴∠ACB=∠CAB,∴△ABC是等腰直角三角形;(2)解:∵△ABC是等腰直角三角形,∴BC=AB=,∴AC=,Rt△ADC中,∠ADC=90°,AD=1,则CD=,∴CD=.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.12.(2022·江苏无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证;(2)当时,求CE的长.【答案】(1)见解析(2)【分析】(1)根据同弧所对圆周角相等可得,再由对顶角相等得,故可证明绪论;(2)根据可得由可得出连接AE,可证明,得出 代入相关数据可求出,从而可求出绪论.(1)∵所对的圆周角是,∴,又,∴;(2)∵△是等边三角形,∴∵,∴∴∵∴,∴∴连接如图,∵∴∴∠又∠,∴△∴,∴∴,∴(负值舍去)∴,解得,【点睛】本题主要考查了圆周角定理,相似三角形和判定与性质,正确作出辅助线是解答本题的关键.13.(2022·四川成都)如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:;(2)若,,求及的长.【答案】(1)见解析(2)BF=5,【分析】(1)根据中,,得到∠A+∠B=∠ACF+∠BCF=90°,根据,得到∠B=∠BCF,推出∠A=∠ACF;(2)根据∠B=∠BCF,∠A=∠ACF,得到AF=CF,BF=CF,推出AF=BF= AB,根据,AC=8,得到AB=10,得到BF=5,根据,得到,连接CD,根据BC是⊙O的直径,得到∠BDC=90°,推出∠B+∠BCD=90°,推出∠A=∠BCD,得到,推出,得到,根据∠FDE=∠BCE,∠B=∠BCE,得到∠FDE=∠B,推出DE∥BC,得到△FDE∽△FBC,推出,得到.(1)解:∵中,,∴∠A+∠B=∠ACF+∠BCF=90°,∵,∴∠B=∠BCF,∴∠A=∠ACF;(2)∵∠B=∠BCF,∠A=∠ACF∴AF=CF,BF=CF,∴AF=BF= AB,∵,AC=8,∴AB=10,∴BF=5,∵,∴,连接CD,∵BC是⊙O的直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∴,∴,∴,∵∠FDE=∠BCE,∠B=∠BCE,∴∠FDE=∠B,∴DE∥BC,∴△FDE∽△FBC,∴,∴.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.题型三、与圆有关的性质综合1.(2022·内蒙古包头)如图,是的两条直径,E是劣弧的中点,连接,.若,则的度数为( )A. B. C. D.【答案】C【分析】连接OE,由题意易得,则有,然后可得,进而根据圆周角定理可求解.【详解】解:连接OE,如图所示:∵OB=OC,,∴,∴,∵E是劣弧的中点,∴,∴;故选C.【点睛】本题主要考查圆周角定理及垂径定理,熟练掌握圆周角定理及垂径定理是解题的关键.2.(2022·浙江湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是______.【答案】30°##30度【分析】根据垂径定理得出∠AOB=∠BOD,进而求出∠AOD=60°,再根据圆周角定理可得∠APD=∠AOD=30°.【详解】∵OC⊥AB,OD为直径,∴,∴∠AOB=∠BOD,∵∠AOB=120°,∴∠AOD=60°,∴∠APD=∠AOD=30°,故答案为:30°.【点睛】本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.3.(2022·四川凉山)如图,⊙O的直径AB经过弦CD的中点H,若cos∠CDB=,BD=5,则⊙O的半径为_______.【答案】【分析】先由垂径定理求得BC=BD=5,再由直径所对圆周角是直角∠ACB=90°,由余弦定义可推出sinA=,即可求得sinA=,然后由圆周角定理得∠A=∠D,,即可得,则半径可求.【详解】解:连接AC,如图,∵⊙O的直径AB经过弦CD的中点H,∴CH=DH,AB⊥CD,∴BC=BD=5,∵AB是⊙O的直径,∴∠ACB=90°,∴sinA=,∵∠A=∠D,∴cosA= cosD=,∴sinA=sinD=∴,∴AB=∴半径为【点睛】本题考查解直角三角形,圆周角定理,垂径定理的推论,求得∠ACB=90°、∠A=∠D是解题的关键.4.(2022·湖北十堰)如图,是等边的外接圆,点是弧上一动点(不与,重合),下列结论:①;②;③当最长时,;④,其中一定正确的结论有( )A.1个 B.2个 C.3个 D.4个【答案】C【分析】根据等边三角形的性质可得,从而得到∠ADB=∠BDC,故①正确;根据点是上一动点,可得不一定等于,故②错误;当最长时,DB为圆O的直径,可得∠BCD=90°,再由是等边的外接圆,可得∠ABD=∠CBD=30°,可得,故③正确;延长DA至点E,使AE=AD,证明△ABE≌△CBD,可得BD=AE,∠ABE=∠DBC,从而得到△BDE是等边三角形,可得到DE=BD,故④正确;即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴,∴∠ADB=∠BDC,故①正确;∵点是上一动点,∴不一定等于,∴DA=DC不一定成立,故②错误;当最长时,DB为圆O的直径,∴∠BCD=90°,∵是等边的外接圆,∠ABC=60°,∴BD⊥AC,∴∠ABD=∠CBD=30°,∴,故③正确;如图,延长DA至点E,使AE=DC,∵四边形ABCD为圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠BAE+∠BAD=180°,∴∠BAE=∠BCD,∵AB=BC,AE=CD,∴△ABE≌△CBD,∴BD=AE,∠ABE=∠DBC,∴∠ABE+∠ABD=∠DBC+∠ABD=∠ABC=60°,∴△BDE是等边三角形,∴DE=BD,∵DE=AD+AE=AD+CD,∴,故④正确;∴正确的有3个.故选:C.【点睛】本题主要考查了圆周角定理,三角形的外接圆,圆内接四边形的性质,垂径定理,等边三角形的判定和性质等知识,熟练掌握圆周角定理,三角形的外接圆,圆内接四边形的性质,垂径定理,等边三角形的判定和性质等知识是解题的关键.5.(2022·四川德阳)如图,点是的内心,的延长线和的外接圆相交于点,与相交于点,则下列结论:①;②若,则;③若点为的中点,则;④.其中一定正确的个数是( )A.1 B.2 C.3 D.4【答案】D【分析】根据点是的内心,可得,故①正确;连接BE,CE,可得∠ABC+∠ACB =2(∠CBE+∠BCE),从而得到∠CBE+∠BCE=60°,进而得到∠BEC=120°,故②正确; ,得出,再由点为的中点,则成立,故③正确;根据点是的内心和三角形的外角的性质,可得,再由圆周角定理可得,从而得到∠DBE=∠BED,故④正确;即可求解.【详解】解:∵点是的内心,∴,故①正确;如图,连接BE,CE,∵点是的内心,∴∠ABC=2∠CBE,∠ACB=2∠BCE,∴∠ABC+∠ACB =2(∠CBE+∠BCE),∵∠BAC=60°,∴∠ABC+∠ACB=120°,∴∠CBE+∠BCE=60°,∴∠BEC=120°,故②正确;∵点是的内心,∴,∴,∵点为的中点,∴线段AD经过圆心O,∴成立,故③正确;∵点是的内心,∴,∵∠BED=∠BAD+∠ABE,∴,∵∠CBD=∠CAD,∴∠DBE=∠CBE+∠CBD=∠CBE+∠CAD,∴,∴∠DBE=∠BED,∴,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了三角形的内心问题,圆周角定理,三角形的内角和等知识,熟练掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.6.(2022·山东临沂)如图,AB是的切线,B为切点,直线AO交于C,D两点,连接BC,BD,过圆心О作BC的平行线,分别交AB的延长线、及BD于点E,F,G.(1)求证:;(2)若F是OE的中点,的半径为3,求阴影部分的面积.【答案】(1)见解析(2)【分析】(1)连接OB,由切线的性质和圆周角定理可得,继而证明,再由平行线的性质,等腰三角形的性质得,,再利用三角形的内角和进行证明即可;(2)由题意得,由可得,继而可证明,,利用勾股定理可得的长度,根据阴影部分的面积,利用扇形面积公式即可求解.(1)连接OB,AB是的切线,CD为直径,,,即,,,,,,在和中,,;(2)F是OE的中点,的半径为3,,,在中,,,,,,,,,,由勾股定理得,阴影部分的面积.【点睛】本题考查了切线的性质,圆周角定理,平行线的性质,等腰三角形的性质,三角形的内角和定理,解直角三角形,勾股定理,扇形面积公式,熟练掌握知识点是解题的关键.7.(2022·福建)如图,△ABC内接于⊙O,交⊙O于点D,交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).【答案】(1)见解析(2)【分析】(1)先证明四边形ABED是平行四边形,得∠B=∠D,再证明即可得到结论;(2)连接OA,OC,根据等腰三角形的性质求出,由圆周角定理可得最后由弧长公式可求出结论.(1)∵,,∴四边形ABED是平行四边形,∴∠B=∠D.又∠AFC=∠B,∠ACF=∠D,∴,∴AC=AF.(2)连接AO,CO.由(1)得∠AFC=∠ACF,又∵∠CAF=30°,∴,∴.∴的长.【点睛】本题主要考查了平行四边形的判定与性质,圆周角定理、等腰三角形的性质、弧长公式等知识,熟练掌握相关知识是解答本题的关键.8.(2022·湖北武汉)如图,正方形内接于,点E为的中点,连接交于点F,延长交于点G,连接.(1)求证:;(2)若.求和的长.【答案】(1)见详解(2)FB=【分析】(1)根据正方形性质得出AD=BC,可证∠ABD=∠CGB,再证△BFE∽△GFB即可;(2)根据点E为AB中点,求出AE=BE=3,利用勾股定理求得BD=,CE=,然后证明△CDF∽△BEF,得出DF=2BF,CF=2EF,求出BF=,EF=即可.(1)证明:正方形内接于,∴AD=BC,∴,∴∠ABD=∠CGB,又∵∠EFB=∠BFG,∴△BFE∽△GFB,∴,即;(2)解:∵点E为AB中点,∴AE=BE=3,∵四边形ABCD为正方形,∴CD=AB=AD=6,BD=,CE=,∵CD∥BE,∴△CDF∽△EBF,∴,∴DF=2BF,CF=2EF,∴3BF=BD=,3EF=,∴BF=,EF=,由(1)得FG=.【点睛】本题考查圆内接正方形性质,弧,弦,圆周角关系,勾股定理,三角形相似判定与性质,掌握圆内接正方形性质,弧,弦,圆周角关系,勾股定理,三角形相似判定与性质是解题关键. 展开更多...... 收起↑ 资源预览