23. 2023年贵州省初中学业水平考试三模冲刺仿真数学试卷(原卷版+解析版)

资源下载
  1. 二一教育资源

23. 2023年贵州省初中学业水平考试三模冲刺仿真数学试卷(原卷版+解析版)

资源简介

中小学教育资源及组卷应用平台
新版课标下2023年各省自治区直辖市数学学业水平考试三模仿真试卷
23. 2023年贵州省初中学业水平考试三模仿真数学试卷
(全卷总分150分,考试时间120分钟)
一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)
1. 在实数,,,中,有理数是( )
A. B. C. D.
2. 2022年4月18日,国家统计局发布数据,今年一季度国内生产总值270178亿元.同比增长4.8%,比2021年四季度环比增长1.3%.把27017800000000用科学记数法表示为( )
A. B. C. D.
3.下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥运会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是( )
A. B. C. D.
4. 下表是2022年1月—5月遵义市PM2.5(空气中直径小于等于2.5微米的颗粒)的平均值,这组数据的众数是( )
月份 1月 2月 3月 4月 5月
PM2.5(单位:mg/m3) 24 23 24 25 22
A. 22 B. 23 C. 24 D. 25
5. 估计值在(  )
A. 2和3之间 B. 3和4之间 C. 4和5之间 D. 5和6之间
6. 如图,直线,直线c与直线a,b分别相交于点A,B,,垂足为C.若,则( )
A. 52° B. 45° C. 38° D. 26°
7. 若一次函数的图象经过点,,则与的大小关系是( )
A. B. C. D.
8. 在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )
A. 红球 B. 黄球 C. 白球 D. 蓝球
9. 如图,在中,是边上的点,,,则与的周长比是( )
A. B. C. D.
10.如图,是的两条半径,点C在上,若,则的度数为( )
A. B. C. D.
11.下列计算错误的是( )
A. B. C. D.
12. 在同一平面直角坐标系中,一次函数与的图象如图所示,小星根据图象得到如下结论:
①在一次函数的图象中,的值随着值的增大而增大;
②方程组的解为;
③方程的解为;
④当时,.
其中结论正确的个数是( )
A. 1 B. 2 C. 3 D. 4
二、填空题(本题共4小题,每小题4分,共16分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)
13.把多项式x3+2x2﹣3x因式分解,结果为    .
14.在一个不透明的袋中装有除颜色外其余都相同的5个小球,其中3个红球、2个黄球.如果第一次先从袋中摸出1个球后不放回,第二次再从袋中摸出1个球,那么两次都摸到黄球的概率是   .
15. 不等式组的解集是________.
16. 如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.
三、解答题(本题共7小题,共86分.答题请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上解答时应写出必要的文字说明、证明过程或演算步骤.)
17. (8分)在平面直角坐标系内有三点A( 1,4)、B( 3,2)、C(0,6).
(1)求过其中两点的直线的函数表达式(选一种情形作答);
(2)判断A、B、C三点是否在同一直线上,并说明理由.
18. (10分)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:
(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择_______统计图更好(填“条形”或“折线”);
(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是_______万亿元;
(3)写出一条关于我国货物进出口总额变化趋势的信息.
19. (10分)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?
20. (10分)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,是灯杆,是灯管支架,灯管支架与灯杆间的夹角.综合实践小组的同学想知道灯管支架的长度,他们在地面的点处测得灯管支架底部的仰角为60°,在点处测得灯管支架顶部的仰角为30°,测得m,m(,,在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度的长(结果保留根号);
(2)求灯管支架的长度(结果精确到0.1m,参考数据:).
21. (12分)如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.
(1)求证:;
(2)若,,求的长.
22. (12分)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
(1)求证:AB=CB;
(2)若AB=18,sinA=,求EF的长.
23.(12分)如图,已知抛物线y=ax2+bx+c与x轴相交于A(﹣3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=﹣1,连接AC.
(1)求该抛物线的表达式;
(2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;
(3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△BDP=S△ABD.请直接出所有符合条件的点P的坐标.
24. (12分)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.
(1)问题解决:
如图①,当,将沿翻折后,使点与点重合,则______;
(2)问题探究:
如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
(3)拓展延伸:
当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
新版课标下2023年各省自治区直辖市数学学业水平考试三模仿真试卷
23. 2023年贵州省初中学业水平考试三模仿真数学试卷
(全卷总分150分,考试时间120分钟)
一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)
1. 在实数,,,中,有理数是( )
A. B. C. D.
【答案】C
【解析】根据有理数的定义进行求解即可.
在实数,,,中,有理数为,其他都是无理数,
故选C.
【点睛】本题主要考查了实数的分类,熟知有理数和无理数的定义是解题的关键.
2. 2022年4月18日,国家统计局发布数据,今年一季度国内生产总值270178亿元.同比增长4.8%,比2021年四季度环比增长1.3%.把27017800000000用科学记数法表示为( )
A. B. C. D.
【答案】B
【解析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.
故选B.
【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.
3.下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥运会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形为轴对称图形.
A.不能沿一条直线折叠完全重合;
B.不能沿一条直线折叠完全重合;
C.不能沿一条直线折叠完全重合;
D.能够沿一条直线折叠完全重合;故选:D.
【点睛】本题考查了轴对称图形的概念,关键在于熟练掌握轴对称图形的概念,并对选项作出正确判断.
4. 下表是2022年1月—5月遵义市PM2.5(空气中直径小于等于2.5微米的颗粒)的平均值,这组数据的众数是( )
月份 1月 2月 3月 4月 5月
PM2.5(单位:mg/m3) 24 23 24 25 22
A. 22 B. 23 C. 24 D. 25
【答案】C
【解析】根据众数的定义即可求解,众数:一组数据中出现次数最多的数.
∵24出现了2次,次数最多,
∴这组数据的众数是24,
故选C
【点睛】本题考查了求众数,掌握众数的定义是解题的关键.
5. 估计值在(  )
A. 2和3之间 B. 3和4之间 C. 4和5之间 D. 5和6之间
【答案】C
【解析】找到与接近的两个连续的有理数,进而分析得出答案.
∵,即:,
∴的值在4和5之间,
故选C.
【点睛】本题主要考查的是估算无理数的大小,正确得出与无理数接近的两个连续的整数是解决此类型题目的关键,“无限逼近法”是估算的一般方法,也是常用方法.
6. 如图,直线,直线c与直线a,b分别相交于点A,B,,垂足为C.若,则( )
A. 52° B. 45° C. 38° D. 26°
【答案】C
【解析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.
∵ab,
∴∠1=∠ABC=52°,
∵AC⊥b,
∴∠ACB=90°,
∴∠2=90°-∠ABC=38°,故选:C.
【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.
7. 若一次函数的图象经过点,,则与的大小关系是( )
A. B. C. D.
【答案】A
【解析】先根据一次函数的解析式判断出函数的增减性,再根据-3<4即可得出结论.
∵一次函数y=2x+1中,k=2>0,
∴y随着x的增大而增大.
∵点(-3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,-3<4,
∴y1<y2.故选:A.
【点睛】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.
8. 在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )
A. 红球 B. 黄球 C. 白球 D. 蓝球
【答案】A
【解析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.
在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,
因为红球的个数最多,所以摸到红球的概率最大,
摸到红球的概率是:
【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A) = .
9. 如图,在中,是边上的点,,,则与的周长比是( )
A. B. C. D.
【答案】B
【解析】先证明△ACD∽△ABC,即有,则可得,问题得解.
∵∠B=∠ACD,∠A=∠A,
∴△ACD∽△ABC,
∴,
∵,
∴,
∴,
∴△ADC与△ACB的周长比1:2,
故选:B.
【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD∽△ABC是解答本题的关键.
10.如图,是的两条半径,点C在上,若,则的度数为( )
A. B. C. D.
【答案】B
【解析】根据圆周角定理即可求解.
∵是的两条半径,点C在上,
∴∠C= =40°
【点睛】本题考查的是圆周角定理,熟知在同圆或者在等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答本题关键.
11.下列计算错误的是( )
A. B. C. D.
【答案】D
【解析】根据绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则求解即可.
A、,计算正确,不符合题意;
B、,计算正确,不符合题意;
C、,计算正确,不符合题意;
D、,计算错误,符合题意;
故选D.
【点睛】本题主要考查了绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则,熟知相关知识是解题的关键.
12. 在同一平面直角坐标系中,一次函数与的图象如图所示,小星根据图象得到如下结论:
①在一次函数的图象中,的值随着值的增大而增大;
②方程组的解为;
③方程的解为;
④当时,.
其中结论正确的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】由函数图象经过的象限可判断①,由两个一次函数的交点坐标可判断②,由一次函数与坐标轴的交点坐标可判断③④,从而可得答案.
【详解】解:由一次函数的图象过一,二,四象限,的值随着值的增大而减小;
故①不符合题意;
由图象可得方程组的解为,即方程组的解为;
故②符合题意;
由一次函数的图象过 则方程的解为;故③符合题意;
由一次函数的图象过 则当时,.故④不符合题意;
综上:符合题意有②③,故选B
【点睛】本题考查的是一次函数的性质,一次函数的图象的交点坐标与二元一次方程组的解,一次函数与坐标轴的交点问题,熟练的运用数形结合的方法解题是关键.
二、填空题(本题共4小题,每小题4分,共16分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)
13.把多项式x3+2x2﹣3x因式分解,结果为    .
【答案】x(x+3)(x﹣1).
【解析】先提取公因式x,再利用十字相乘法分解因式即可.
原式=x(x2+2x﹣3)=x(x+3)(x﹣1).
14.在一个不透明的袋中装有除颜色外其余都相同的5个小球,其中3个红球、2个黄球.如果第一次先从袋中摸出1个球后不放回,第二次再从袋中摸出1个球,那么两次都摸到黄球的概率是   .
【答案】.
【解析】画树状图,共有20种等可能的结果,两次都摸到黄球的结果有2种,再由概率公式求解即可.
画树状图如图:
共有20种等可能的结果,两次都摸到黄球的结果有2种,
∴两次都摸到黄球的概率为=.
15. 不等式组的解集是________.
【答案】-3≤x<-1
【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.

由①得:x≥-3,
由②得:x<-1,
则不等式组的解集为-3≤x<-1,
故答案为:-3≤x<-1.
【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
16. 如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.
【答案】
【解析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.
作点P关于CE的对称点P′,
由折叠的性质知CE是∠DCM的平分线,
∴点P′在CD上,
过点M作MF⊥CD于F,交CE于点G,
∵MN+NP=MN+NP′≤MF,
∴MN+NP的最小值为MF的长,
连接DG,DM,
由折叠的性质知CE为线段 DM的垂直平分线,
∵AD=CD=2,DE=1,
∴CE==,
∵CE×DO=CD×DE,
∴DO=,
∴EO=,
∵MF⊥CD,∠EDC=90°,
∴DE∥MF,
∴∠EDO=∠GMO,
∵CE为线段DM的垂直平分线,
∴DO=OM,∠DOE=∠MOG=90°,
∴△DOE≌△MOG,
∴DE=GM,
∴四边形DEMG为平行四边形,
∵∠MOG=90°,
∴四边形DEMG为菱形,
∴EG=2OE=,GM= DE=1,
∴CG=,
∵DE∥MF,即DE∥GF,
∴△CFG∽△CDE,
∴,即,
∴FG=,
∴MF=1+=,
∴MN+NP的最小值为.
故答案为:.
【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.
三、解答题(本题共7小题,共86分.答题请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上解答时应写出必要的文字说明、证明过程或演算步骤.)
17. (8分)在平面直角坐标系内有三点A( 1,4)、B( 3,2)、C(0,6).
(1)求过其中两点的直线的函数表达式(选一种情形作答);
(2)判断A、B、C三点是否在同一直线上,并说明理由.
【答案】(1)直线AB的解析式y=x+5;
(2)点A、B、C三点不在同一条直线上,理由见解析
【解析】【分析】(1)根据A、B两点的坐标求得直线AB的解析式;
(2)把C的坐标代入看是否符合解析式即可判定.
【详解】(1)解:设A( 1,4)、B( 3,2)两点所在直线解析式为y=kx+b,
∴,
解得,
∴直线AB的解析式y=x+5;
(2)解:当x=0时,y=0+5≠6,
∴点C(0,6)不在直线AB上,即点A、B、C三点不在同一条直线上.
【点睛】本题考查了待定系数法求解析式,以及判定是否是直线上的点,掌握一次函数图像上的点的坐标特征是关键.
18. (10分)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:
(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择_______统计图更好(填“条形”或“折线”);
(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是_______万亿元;
(3)写出一条关于我国货物进出口总额变化趋势的信息.
【答案】(1)折线 (2)2021年我国货物进出口顺差是万亿元. (3)答案见解析
【解析】【分析】(1)条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;据此解答即可.
(2)根据货物进出口顺差进行计算即可;
(3)根据条形图与折线图的信息可得到答案.
【小问1详解】
解:选择折线统计图比较合适,这种统计图不仅能表示数量的多少,还能反映出数量间的增减变化情况.
【小问2详解】
(万亿元)
∴2021年我国货物进出口顺差是万亿元.
【小问3详解】
2019年至2021年进出口的总额总的来说呈现上升的趋势.出口逐年递增,进口先少量递减,再递增.
【点睛】本题考查的是从条形统计图与折线统计图中获取信息,根据信息再做出决策,掌握以上统计知识是解本题的关键.
19. (10分)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?
【答案】该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.
【解析】【分析】设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,利用工作时间=工作总量÷工作效率,结合提前2天完成订单任务,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,
依题意得:,
解得:x=40,
经检验,x=40是原方程的解,且符合题意.
答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.
【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
20. (10分)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,是灯杆,是灯管支架,灯管支架与灯杆间的夹角.综合实践小组的同学想知道灯管支架的长度,他们在地面的点处测得灯管支架底部的仰角为60°,在点处测得灯管支架顶部的仰角为30°,测得m,m(,,在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度的长(结果保留根号);
(2)求灯管支架的长度(结果精确到0.1m,参考数据:).
【答案】(1) (2)
【解析】【分析】(1)解即可求解;
(2)延长交于点,证明是等边三角形,解,根据即可求解.
【详解】(1)在中,
(2)如图,延长交于点,
中,
是等边三角形
答:灯管支架的长度约为.
【点睛】本题考查了解直角三角形的应用,等边三角形的性质与判定,掌握以上知识是解题的关键.
21. (12分)如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.
(1)求证:;
(2)若,,求的长.
【答案】(1)见详解 (2)
【解析】【分析】(1)先证明四边形ADFM是矩形,得到AD=MF,∠AMF=90°=∠MFD,再利用MN⊥BE证得∠MBO=∠OMF,结合∠A=90°=∠NFM即可证明;
(2)利用勾股定理求得BE=10=MN,根据垂直平分线的性质可得BO=OE=5,BM=ME,即有AM=AB-BM=8-ME,在Rt△AME中,,可得,解得:,即有,再在Rt△BMO中利用勾股定理即可求出MO,则NO可求.
【详解】(1)在正方形ABCD中,有AD=DC=CB=AB,∠A=∠D=∠C=90°,,

∵,∠A=∠D=90°,,
∴四边形ADFM是矩形,
∴AD=MF,∠AMF=90°=∠MFD,
∴∠BMF=90°=∠NFM,即∠BMO+∠OMF=90°,AB=AD=MF,
∵MN是BE的垂直平分线,
∴MN⊥BE,
∴∠BOM=90°=∠BMO+∠MBO,
∴∠MBO=∠OMF,
∵,
∴△ABE≌△FMN;
(2)连接ME,如图,
∵AB=8,AE=6,
∴在Rt△ABE中,,
∴根据(1)中全等的结论可知MN=BE=10,
∵MN是BE的垂直平分线,
∴BO=OE==5,BM=ME,
∴AM=AB-BM=8-ME,
∴在Rt△AME中,,
∴,解得:,
∴,
∴在Rt△BMO中,,
∴,
∴ON=MN-MO=.
即NO的长为:.
【点睛】本题考查了矩形的判定与性质、正方形的性质、垂直平分线的性质、勾股定理、全等三角形的判定与性质等知识,掌握勾股定理是解答本题的关键.
22. (12分)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
(1)求证:AB=CB;
(2)若AB=18,sinA=,求EF的长.
【答案】(1)见解析 (2)EF.
【解析】【分析】(1)连接OD,则OD⊥DE,利用BC⊥DE,可得OD∥BC,通过证明得出∠A=∠C,结论得证;
(2)连接BD,在Rt△ABD中,利用sinA=求得线段BD的长;在Rt△BDF中,利用sin∠A=sin∠FDB,解直角三角形可得结论;
【详解】(1)证明:连接OD,如图1,
∵DE是⊙O的切线,
∴OD⊥DE.
∵BC⊥DE,
∴OD∥BC.
∴∠ODA=∠C.
∵OA=OD,
∴∠ODA=∠A.
∴∠A=∠C.
∴AB=BC;
(2)解:连接BD,则∠ADB=90°,如图2,
在Rt△ABD中,
∵sinA==,AB=18,
∴BD=6.
∵OB=OD,
∴∠ODB=∠OBD.
∵∠OBD+∠A=∠FDB+∠ODB=90°,
∴∠A=∠FDB.
∴sin∠A=sin∠FDB.
在Rt△BDF中,
∵sin∠BDF==,
∴BF=2.
由(1)知:OD∥BF,
∴△EBF∽△EOD.
∴=.即:=.
解得:BE=.
∴EF=.
【点睛】本题主要考查了圆的切线的性质,垂径定理,圆周角定理,三角形相似的判定与性质,解直角三角形,勾股定理,等腰三角形的判定,平行线的判定与性质.连接过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.
23.(12分)如图,已知抛物线y=ax2+bx+c与x轴相交于A(﹣3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=﹣1,连接AC.
(1)求该抛物线的表达式;
(2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;
(3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△BDP=S△ABD.请直接出所有符合条件的点P的坐标.
【答案】见解析。
【解析】(1)先根据对称轴得出b=2a,再由点C的坐标求出c=2,最后将点A的坐标代入抛物线解析式求解,即可得出结论;
(2)分两种情况,Ⅰ、当点D在x轴上方时,先判断出AE=BE,进而得出点E在直线x=﹣1上,再求出点E的坐标,最后用待定系数法求出直线l的解析式;Ⅱ、当点D在x轴下方时,判断出BD∥AC,即可得出结论;
(3)先求出点D的坐标,进而求出△ABD的面积,得出△PBD的面积,设P(m,﹣m2﹣m+2)(m<0),过P作y轴的平行线交直线BD于F,得出F(m,m﹣),进而表示出PF,最后用面积建立方程求解,即可得出结论.
解:(1)∵抛物线的对称轴为x=﹣1,
∴﹣=﹣1,
∴b=2a,
∵点C的坐标为(0,2),
∴c=2,
∴抛物线的解析式为y=ax2+2ax+2,
∵点A(﹣3,0)在抛物线上,
∴9a﹣6a+2=0,
∴a=﹣,
∴b=2a=﹣,
∴抛物线的解析式为y=﹣x2﹣x+2;
(2)Ⅰ、当点D在x轴上方时,如图1,
记BD与AC的交点为点E,
∵∠ABD=∠BAC,
∴AE=BE,
∵直线x=﹣1垂直平分AB,
∴点E在直线x=﹣1上,
∵点A(﹣3,0),C(0,2),
∴直线AC的解析式为y=x+2,
当x=﹣1时,y=,
∴点E(﹣1,),
∵点A(﹣3,0)点B关于x=﹣1对称,
∴B(1,0),
∴直线BD的解析式为y=﹣x+,
即直线l的解析式为y=﹣x+;
Ⅱ、当点D在x轴下方时,如图2,
∵∠ABD=∠BAC,
∴BD∥AC,
由Ⅰ知,直线AC的解析式为y=x+2,
∴直线BD的解析式为y=x﹣,
即直线l的解析式为y=x﹣;
综上,直线l的解析式为y=﹣x+或y=x﹣;
(3)由(2)知,直线BD的解析式为y=x﹣①,
∵抛物线的解析式为y=﹣x2﹣x+2②,
∴或,
∴D(﹣4,﹣),
∴S△ABD=AB |yD|=×4×=,
∵S△BDP=S△ABD,
∴S△BDP=×=10,
∵点P在y轴左侧的抛物线上,
∴设P(m,﹣m2﹣m+2)(m<0),
过P作y轴的平行线交直线BD于F,
∴F(m,m﹣),
∴PF=|﹣m2﹣m+2﹣(m﹣)|=|m2+2m﹣|,
∴S△BDP=PF (xA﹣xB)=×|m2+2m﹣|×4=10,
∴m=(舍)或m=,
∴P(,5).
24. (12分)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.
(1)问题解决:
如图①,当,将沿翻折后,使点与点重合,则______;
(2)问题探究:
如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
(3)拓展延伸:
当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.
【答案】(1) (2) (3)作图见解析,
【解析】【分析】(1)根据等边三角形的性质,平行四边形的性质可得,根据特殊角的三角函数值即可求解;
(2)根据折叠的性质即可求得,由三角形内角和定理可得,根据点在边上,当时,取得最小值,最小值为;
(3)连接,设, 则,,在中,,延长交于点,在中,,进而根据,即可求解.
【小问1详解】

是等边三角形,
四边形是平行四边形,


为边上的高,

【小问2详解】
,,
是等腰直角三角形,







,是等腰直角三角形,为底边上的高,则
点在边上,
当时,取得最小值,最小值;
【小问3详解】
如图,连接,
,则,
设, 则,,
折叠,










在中,,

延长交于点,如图,





在中,,


【点睛】本题考查了轴对称的性质,特殊角的三角函数值,解直角三角形,勾股定理,三角形内角和定理,含30度角的直角三角形的性质,平行四边形的性质,等边三角形的性质,综合运用以上知识是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表