资源简介 中小学教育资源及组卷应用平台【备考2023】中考情境类题目练习:方程与不等式学校:___________姓名:___________班级:___________考号:___________一、选择题1.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是( )A. B. C. D.二、填空题2.我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为____________.3.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.三、解答题4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为 ;(2)求兽、鸟各有多少.5.阅读材料,解答问题:材料1为了解方程,如果我们把看作一个整体,然后设,则原方程可化为,经过运算,原方程的解为,.我们把以上这种解决问题的方法通常叫做换元法.材料2已知实数m,n满足,,且,显然m,n是方程的两个不相等的实数根,由韦达定理可知,.根据上述材料,解决以下问题:(1)直接应用:方程的解为_______________________;(2)间接应用:已知实数a,b满足:,且,求的值;(3)拓展应用:已知实数x,y满足:,且,求的值.6.某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:水果品种 梨子 菠萝 苹果 车厘子批发价格(元/kg) 4 5 6 40零售价格(元/kg) 5 6 8 50请解答下列问题:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?7.某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等.请解答下列问题:(1)求A,B两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)8.阅读下列问题与提示后,将解方程的过程补充完整,求出x的值.问题:解方程(提示:可以用换元法解方程),解:设,则有,原方程可化为:,续解:9.资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.材料:某地有A,B两家商贸公司(以下简称A,B公司).去年下半年A,B公司营销区域面积分别为m平方千米,n平方千米,其中,公共营销区域面积与A公司营销区域面积的比为;今年上半年,受政策鼓励,各公司决策调整,A公司营销区域面积比去年下半年增长了,B公司营销区域面积比去年下半年增长的百分数是A公司的4倍,公共营销区域面积与A公司营销区域面积的比为,同时公共营销区域面积与A,B两公司总营销区域面积的比比去年下半年增加了x个百分点.问题:(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B公司营销区域面积的比),并解答;(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A公司每半年每平方千米产生的经济收益均为B公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.10.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足①,②,求和的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①②可得,由①②可得.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组,则________,________;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知,,那么________.11.阅读下面的材料:对于实数,我们定义符号的意义为:当时,;当时,,如:.根据上面的材料回答下列问题:(1)______;(2)当时,求x的取值范围.12.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}= ; ②min{sin30°,cos60°,tan45°}= ;(2)若M{﹣2x,x2,3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.13.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为,排在第二位的数称为第二项,记为,依此类推,排在第n位的数称为第n项,记为.所以,数列的一般形式可以写成:,,,…,.一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中,,公差为.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为______,第5项是______.(2)如果一个数列,,,…,…,是等差数列,且公差为d,那么根据定义可得到:,,,…,,….所以,,,……,由此,请你填空完成等差数列的通项公式:(______)d.(3)是不是等差数列,,…的项?如果是,是第几项?参考答案:1.【分析】设人数为x人,物价为y钱,根据每人出8钱,会多出3钱可得方程,根据每人出7钱,又差4钱可得方程,据此列出方程组即可.解:设人数为x人,物价为y钱,由题意得,,故选B.【点评】本题主要考查了从实际问题中抽象出二元一次方程组,正确理解题意找到等量关系是解题的关键.2.【分析】根据“每人出100钱,则会多出100钱”用x表示出买猪需要的钱;根据“每人出90钱,恰好合适”用x表示出买猪需要的钱;二者相等,即可列方程.依题意:.故答案为:100x-100=90x.【点评】本题考查一元一次方程得实际应用,找到等量关系是本题解题关键.3.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.【点评】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.4.【分析】(1)根据“兽与鸟共有76个头与46只脚”,即可得出关于x、y的二元一次方程组;(2)解方程组,即可得出结论.(1)解:∵兽与鸟共有76个头,∴6x+4y=76;∵兽与鸟共有46只脚,∴4x+2y=46.∴可列方程组为.故答案为:;(2)解:原方程组可化简为,由②可得y=23-2x③,将③代入①得3x+2(23-2x)=38,解得x=8,∴y=23-2x=23-2×8=7.答:兽有8只,鸟有7只.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【分析】(1)利用换元法降次解决问题;(2)模仿例题解决问题即可;(3)令=a,-n=b,则+a-7=0, +b=0,再模仿例题解决问题.(1)解:令y=,则有-5y+6=0,∴(y-2)(y-3)=0,∴=2,=3,∴=2或3,∴,,,,故答案为:,,,;(2)解:∵,∴或①当时,令,,∴则,,∴,是方程的两个不相等的实数根,∴,此时;②当时,,此时;综上:或(3)解:令,,则,,∵,∴即,∴,是方程的两个不相等的实数根,∴,故.【点评】本题考查了根与系数的关系,幂的乘方与积的乘方,换元法,解一元二次方程等知识,解题的关键是理解题意,学会模仿例题解决问题.6.【分析】(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;(2)设购进菠萝mkg,则购进苹果,根据“菠梦的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,均为正整数,即可得出各进货方案.(1)解:设第一天,该经营户批发菠萝xkg,苹果ykg,根据题意得:,解得:,∴元,答:这两种水果获得的总利润为500元;(2)解:设购进菠萝mkg,则购进苹果,根据题意:,解得:,∵m,均为正整数,∴m取88,94,∴该经营户第二天共有2种批发水果的方案,方案一购进88kg菠萝,210kg苹果;方案二购进94kg菠萝,205kg苹果.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.7.【分析】(1)设B种防疫用品成本x元/箱,A种防疫用品成本元/箱,根据题意列出分式方程解得即可;(2)设B种防疫用品生产m箱,A种防疫用品生产箱,根据题意列得不等式解得即可;(3)先根据(2)求得最低成本,设购进甲和乙两种设备分别为a,b台,根据题意列得方程,解得正整数解即可.(1)解:设B种防疫用品成本x元/箱,A种防疫用品成本元/箱,由题意,得,解得x=1 500,检验:当x=1 500时,,所以x=1500是原分式方程的解,(元/箱),答:A种防疫用品2000元/箱,B种防疫用品1500元/箱;(2)解:设B种防疫用品生产m箱,A种防疫用品生产箱,,解得,∵B种防疫用品不超过25箱,∴,∵m为正整数,∴m=20,21,22,23,24,25,共有6种方案;(3)解:设生产A和B两种防疫用品费用为w,w=1500m+2000(50-m)=-500m+100000,∵k<0,∴w随m的增大而减小,∴当m=25时,w取得最小值,此时w=87500,设购进甲和乙两种设备分别为a,b台,∴2500a+3500b=87500,∴,∵两种设备都买,∴a,b都为正整数,∴,,,,∴一共4种方案,最多可购买甲乙两种设备共28+5=33台.【点评】本题考查了分式方程、一元一次不等式组、二元一次方程的实际应用,根据题意列出等式或不等式是解题的关键.8.【分析】利用因式分解法解方程t2+4t-5=0得到t1=-5,t2=1,再解方程,然后进行检验确定原方程的解.续解:,,解得,(不合题意,舍去),,,,,经检验都是方程的解.【点评】本题考查了换元法解方程,涉及了无理方程及一元二次方程的解法.看懂提示是解决本题的关键.换元法的一般步骤:设元、换元、解元、还元.9.【分析】(1)根据题意任意写出问题解答即可.(2)根据题意列出等式,解出增长率再代入A,B的收益中计算即可.解(1)问题1:求去年下半年公共营销区域面积与B公司营销区域面积的比解答:问题2:A公司营销区域面积比B公司营销区域的面积多多少?解答:问题3:求去年下半年公共营销区域面积与两个公司总营销区域面积的比解答:(2)方法一:方法二:方法三:解得,(舍去)设B公司每半年每平方千米产生的经济收益为a,则A公司每半年每平方千米产生的经济收益为今年上半年A,B公司产生的总经济收益为去年下半年A,B公司产生的总经济收益为去年下半年与今年上半年两公司总经济收益之比为【点评】本题考查一元二次方程增长率的问题,关键在于理解题意列出等式方程.10.【分析】(1)已知,利用解题的“整体思想”,①-②即可求得x-y,①+②即可求得x+y的值;(2)设每支铅笔x元,每块橡皮y元,每本日记本z元,根据题意列出方程组,根据(1)中“整体思想”,即可求解;(3)根据,可得,,,根据“整体思想”,即可求得的值.(1)①-②,得x-y=-1①+②,得3x+3y=15∴x+y=5故答案为:-1,5(2)设每支铅笔x元,每块橡皮y元,每本日记本z元,则①×2,得40x+6y+4z=64③③-②,得x+y+z=6∴5(x+y+z)=30∴购买5支铅笔、5块橡皮、5本日记本共需30元答:购买5支铅笔、5块橡皮、5本日记本共需30元(3)∵∴①,②,∴②-①,得③∴④①+②,得⑤⑤-④,得∴故答案为:-11【点评】本题考查了利用“整体思想”解二元二次方程组,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,引入了新运算,根据定义结合“整体思想”求代数式的值.11.【分析】(1)比较大小,即可得出答案;(2)根据题意判断出 解不等式即可判断x的取值范围.解:(1)由题意得﹣1故答案为:﹣1;(2)由题意得:3(2x-3)≥2(x+2)6x-9≥2x+44x≥13X≥∴x的取值范围为x≥.【点评】本题考查的是一元一次不等式的应用,根据题意理解新定义的计算公式是解题的关键.12.【分析】(1)①根据平均数的定义计算即可;②求出三个数中的最小的数即可;(2)根据题意,利用平均数的公式构建方程即可解决问题;(3)根据题意可得关于x的不等式组,解不等式即可解决问题.(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=,故答案为①;②;(2))∵M{﹣2x,x2,3}=2,∴,解得x=﹣1或3;(3)∵min{3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4.【点评】本题考查的是阅读理解题,涉及了平均数、特殊角的三角函数值,实数大小比较,解一元二次方程,解不等式组等知识,正确理解题意,学会题中提供的方法是解决问题的关键.13.【分析】(1)根据公差的定义进行求解可得答案,继而根据等差数列的定义即可求得第5项;(2),,与和的关系即可求得答案;(3)根据题意先求出通项公式,继而可求得答案.(1)根据题意得,;,,,故答案为5;25.(2),,……,故答案为;(3)根据题意得,等差数列,,…的项的通项公式为:,则,解之得:,是等差数列,,…的项,它是此数列的第2019项.【点评】本题考查的是阅读理解题,涉及了规律型——数字的变化类、一元一次方程的应用等知识,弄清题意,根据题中的概念以及方法进行求解是关键.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览