资源简介 中小学教育资源及组卷应用平台专题八 二次函数综合【新课标要求】通过对实际问题的分析,体会二次函数的意义;能画二次函数的图象,通过图象了解二次函数的性质,知道二 次函数系数与图象形状和对称轴的关系; 会求二次函数的最大值或最小值,并能确定相应自变量的值, 能解决相应的问题;知道二次函数和一元二次方程之间的关系,会利用二次函数的 图象求一元二次方程的近似解.【考点梳理】知识点1.二次函数的线段周长问题例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式.(2)点M为直线AC上方抛物线上一动点,过M点作MN∥y轴交直线AC于点N, 当点M的坐标为多少时,线段MN有最大值,并求出其最大值.(3)如图,点M为直线AC上方抛物线上一动点,过M点作MN∥y轴交直线AC于点N, 作ME⊥AC于点E,当点M的坐标为多少时,△MEN的周长有最大值,并求出其最大值.(4)在抛物线的对称轴上是否存在点Q,使△BCQ的周长最小;若存在,求出点Q的坐标与周长最小值;若不存在,请说明理由.跟踪训练.1.(2022 广西柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;知识点2.二次函数的面积问题例题2.在平面直角坐标系中,二次函数 y=ax2+bx+2 的图象与 x 轴交于 A(﹣3,0),B(1,0)两点,与 y 轴交于点C.(1)求这个二次函数的关系解析式 ,x 满足什么值时 y﹤0 (2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P,使△ACP 面积最大?若存在,求出点 P的坐标;若不存在,说明理由(3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q,使以 A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.跟踪训练2.(2022 青海西宁)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.(1)求抛物线解析式;(2)连接BE,求△BCE的面积;(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.知识点3.二次函数角度问题例3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.跟踪训练3.(2022 内蒙古通辽)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.知识点4.二次函数特殊三角形问题例4.(2022 滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.跟踪训练4.如图,直线分别与x轴,y轴交于点A,B两点,点C为OB的中点,抛物线经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB下方的抛物线上的一点,且的面积为,求点D的坐标;(3)点P为抛物线上一点,若是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.知识点5.二次函数和特殊四边形例5.如图,在平面直角坐标系中,直线分别交x轴、y轴于A,B两点,经过A,B两点的抛物线与x轴的正半轴相交于点.(1)求抛物线的解析式;(2)若P为线段AB上一点,,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.跟踪训练.5.(2022 烟台)如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.知识点6.二次函数与相似三角形例6.如图,直线分别交轴、轴于点A,B,过点A的抛物线与轴的另一交点为C,与轴交于点,抛物线的对称轴交于E,连接交于点F.(1)求抛物线解析式;(2)求证:;(3)P为抛物线上的一动点,直线交于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与相似?若存在,求点P的横坐标;若不存在,请说明理由.跟踪训练.6.(2022 湖北荆门)已知抛物线y=ax2+bx+c过点A(﹣2,0),B(4,0),D(0,﹣8).(1)求抛物线的解析式及顶点E的坐标;(2)如图,抛物线y=ax2+bx+c向上平移,使顶点E落在x轴上的P点,此时的抛物线记为C,过P作两条互相垂直的直线与抛物线C交于不同于P的M,N两点(M位于N的右侧),过M,N分别作x轴的垂线交x轴于点M1,N1.①求证:△PMM1∽△NPN1;②设直线MN的方程为y=kx+m,求证:k+m为常数.知识点7:二次函数与其它问题例7.(2022 辽宁大连)在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A,B(点A在点B的左侧),与y轴相交于点C,连接AC.(1)求点B,点C的坐标;(2)如图1,点E(m,0)在线段OB上(点E不与点B重合),点F在y轴负半轴上,OE=OF,连接AF,BF,EF,设△ACF的面积为S1,△BEF的面积为S2,S=S1+S2,当S取最大值时,求m的值;(3)如图2,抛物线的顶点为D,连接CD,BC,点P在第一象限的抛物线上,PD与BC相交于点Q,是否存在点P,使∠PQC=∠ACD,若存在,请求出点P的坐标;若不存在,请说明理由.跟踪训练.8.在平面直角坐标系中,抛物线与x轴交于A,B两点(A在B的右侧),与y轴交于点C.(1)求直线CA的解析式;(2)如图,直线与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,于点G,若E为GA的中点,求m的值.(3)直线与抛物线交于,两点,其中.若且,结合函数图象,探究n的取值范围.【巩固提升】1.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.如图,直线交y轴于点A,交x轴于点C,抛物线经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及抛物线的解析式;(2)在直线上方的抛物线上有一点M,求四边形面积的最大值及此时点M的坐标;3.(2022 日照)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2mx+3m,点A(3,0).(1)当抛物线过点A时,求抛物线的解析式;(2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;(3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD与y轴交于点N.设S=S△PAM﹣S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.4.(2022 聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.5.如图,抛物线与x轴交于点和点,与y轴交于点C,连接,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线上,若以点P、Q、E为顶点的三角形与相似,请直接写出点P的坐标.专题八 二次函数综合参考答案例1:解:(1)把A(-3,0)B(1,0)代入中,得,解得,二次函数的解析式为设点M的坐标为,设AC解析式为,则有,解得,则AC解析式为,则当线段MN的长度有最大值,且最大值为,此时M点的坐标为如图,延长MN交x轴于点P,则则当MN最大时,周长有最大值为存在,理由如下:如图,作点C关于对称轴的对称点M,连接BM,则BM与对称轴交点即是点Q的位置,由题知M(-2,2),设直线BM解析式为,将B、M代入得,解得,则直线BC解析式为,将x=-1代入直线得Q点的坐标为,则最小周长为.跟踪练习1:解:(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,得,解得.∴这个抛物线的解析式为:y=﹣x2+4x+5,令y=0,则﹣x2+4x+5=0,解得x1=5,x2=﹣1,∴B(5,0),∴m=5;(2)∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,设D(x,﹣x2+4x+5),∵DE∥x轴,∴E(4﹣x,﹣x2+4x+5),∵过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,∴四边形DEFG是矩形,∴四边形DEFG的周长=2(﹣x2+4x+5)+2(x﹣4+x)=﹣2x2+12x+2=﹣2(x﹣3)2+20,∴当x=3时,四边形DEFG的周长最大,∴当四边形DEFG的周长最大时,点D的坐标为(3,8);例2:解:(1)将A(﹣3,0),B(1,0)两点带入y=ax2+bx+2可得:解得:∴二次函数解析式为.由图像可知,当或时y﹤0;综上:二次函数解析式为,当或时y﹤0;(2)设点P坐标为,如图连接PO,作PM⊥x轴于M,PN⊥y轴于N.PM=,PN=,AO=3.当时,,所以OC=2,∵∴函数有最大值,当时,有最大值,此时;所以存在点,使△ACP 面积最大.(3)存在,假设存在点Q使以 A、C、M、Q 为顶点的四边形是平行四边形①若CM平行于x轴,如下图,有符合要求的两个点此时=∵CM∥x轴,∴点M、点C(0,2)关于对称轴对称,∴M(﹣2,2),∴CM=2.由=;②若CM不平行于x轴,如下图,过点M作MG⊥x轴于点G,易证△MGQ≌△COA,得QG=OA=3,MG=OC=2,即.设M(x,﹣2),则有,解得:.又QG=3,∴,∴综上所述,存在点P使以 A、C、M、Q 为顶点的四边形是平行四边形,Q点坐标为:.跟踪训练2:解:(1)∵将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处,点A的坐标为(3,0),点D的坐标为(1,0),∴点E的坐标为(﹣1,0).将A(3,0),E(﹣1,0)代入y=ax2+bx+3,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当x=0时,y=﹣1×(0)2+2×0+3=3,∴点B的坐标为(0,3).设直线AB的解析式为y=mx+n(m≠0),将A(3,0),B(0,3)代入y=mx+n,得:,解得:,∴直线AB的解析式为y=﹣x+3.∵点C在直线AB上,CD⊥x轴于点D(1,0),当x=1时,y=﹣1×1+3=2,∴点C的坐标为(1,2).∵点A的坐标为(3,0),点B的坐标为(0,3),点C的坐标为(1,2),点E的坐标为(﹣1,0),∴AE=4,OB=3,CD=2,∴S△BCE=S△ABE﹣S△ACE=AE OB﹣AE CD=×4×3﹣×4×2=2,∴△BCE的面积为2.(3)存在,理由如下:∵点A的坐标为(3,0),点B的坐标为(0,3),∴OA=OB=3.在Rt△AOB中,∠AOB=90°,OA=OB,∴∠BAE=45°.∵点P在抛物线上,∴设点P的坐标为(m,﹣m2+2m+3).①当点P在x轴上方时记为P1,过点P1作P1M⊥x轴于点M,在Rt△EMP1中,∠P1EA=45°,∠P1ME=90°,∴EM=P1M,即m﹣(﹣1)=﹣m2+2m+3,解得:m1=﹣1(不合题意,舍去),m2=2,∴点P1的坐标为(2,3);②当点P在x轴下方时记为P2,过点P2作P2N⊥x轴于点N,在Rt△ENP2中,∠P2EN=45°,∠P2NE=90°,∴EN=P2N,即m﹣(﹣1)=﹣(﹣m2+2m+3),解得:m1=﹣1(不合题意,舍去),m2=4,∴点P2的坐标为(4,﹣5).综上所述,抛物线上存在一点P,使∠PEA=∠BAE,点P的坐标为(2,3)或(4,﹣5).例3:解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1;(2)过点P作PD⊥x,交BC与点D,设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1,设点P(x,﹣ x2+x+1),则D(x,﹣ x+1),∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB DP=×3×(﹣x2+x)=﹣x2+x,又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1);(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1,∴∠BAC=45°,∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).跟踪训练3:解:(1)在y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将B、C两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x=1或x=3,∴A(1,0),∴AB=2,∴S△ABC=×2×3=3,∵S△PBC=S△ABC,∴S△PBC=,过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),∴PQ=|﹣t2+3t|,∴=×3×|﹣t2+3t|,解得t=或t=,∴P点坐标为(,)或(,)或(,)或(,);(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,∵OB=OC,∴∠OCB=45°,∵∠ACQ=45°,∴∠BCQ=∠OCA,∵OA=1,∴tan∠OCA=,∴tan∠BCE==,∵BC=3,∴BE=,∵∠OBC=45°,∴∠EBF=45°,∴EF=BF=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得,∴y=x﹣3,联立方程组,解得(舍)或,∴Q(,﹣).例4:解:(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∵点P为该抛物线对称轴上,∴设P(1,p),∴PA==,PC==,∵PA=PC,∴=,∴p=﹣1,∴P(1,﹣1);(3)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M在第四象限时,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,∴M(,﹣),Ⅱ、当点M在第三象限时,M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).例5:(1)令,则,∴点B的坐标为(0,3),抛物线经过点B (0,3),C (1,0),∴,解得,∴抛物线的解析式为:;(2)令,则,解得:,∴点A的坐标为(,0),∴OA=3,OB=3,OC=1,,∵,且,∴△PAO△CAB,∴,即,∴;(3)存在,过点P作PD⊥x轴于点D,∵OA=3,OB=3,∠AOB=,∴∠BAO=∠ABO=,∴△PAD为等腰直角三角形,∵,∴PD=AD=2,∴点P的坐标为(,2),当N在AB的上方时,过点N作NE⊥y轴于点E,如图,∵四边形APMN为平行四边形,∴NM∥AP,NM=AP=,∴∠NME=∠ABO=,∴△NME为等腰直角三角形,∴Rt△NMERt△APD,∴NE=AD=2,当时,,∴点N的坐标为(,3),当N在AB的下方时,过点N作NF⊥y轴于点F,如图,同理可得:Rt△NMFRt△APD,∴NF=AD=2,当时,,∴点N的坐标为(,),当AP为平行四边形的对角线时,点N的横坐标为-4,∴N(-4,-5),综上,点N的坐标为(,3)、 (,)或(-4,-5) .跟踪训练5:解:(1)当x=0时,y=4,∴C (0,4),当y=0时,x+4=0,∴x=﹣3,∴A (﹣3,0),∵对称轴为直线x=﹣1,∴B(1,0),∴设抛物线的表达式:y=a(x﹣1) (x+3),∴4=﹣3a,∴a=﹣,∴抛物线的表达式为:y=﹣(x﹣1) (x+3)=﹣x2﹣x+4;(2)如图1,作DF⊥AB于F,交AC于E,∴D(m,﹣﹣m+4),E(m,m+4),∴DE=﹣﹣m+4﹣(m+4)=﹣m2﹣4m,∴S△ADC=OA= (﹣m2﹣4m)=﹣2m2﹣6m,∵S△ABC===8,∴S=﹣2m2﹣6m+8=﹣2(m+)2+,∴当m=﹣时,S最大=,当m=﹣时,y=﹣=5,∴D(﹣,5);(3)设P(﹣1,n),∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,∴PA=PC,即:PA2=PC2,∴(﹣1+3)2+n2=1+(n﹣4)2,∴n=,∴P(﹣1,),∵xP+xQ=xA+xC,yP+yQ=yA+yC∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣=,∴Q(﹣2,).例6:解:(1)∵直线分别交轴、轴于点A,B∴A(3,0),B(0,),∵抛物线经过A(3,0),D(0,3),∴,解得∴该抛物线的解析式为;(2)∵,∴抛物线的对称轴为直线x=1,设直线AD的解析式为y=kx+a,将A(3,0),D(0,3)代入得: ,解得∴直线AD的解析式为y=-x+3,∴E(1,2),G(1,0),∵∠EGO=90°,∴∵OA=3,OB=,∠A0B=90°,∴∴∴∠OAB=∠OEG,∵∠OEG+∠EOG=90°,∴∠OAB+∠EOG=90°,∴∠AFO=90°,∴OE⊥AB;(3)存在.∵A(3,0),抛物线的对称轴为直线x=1,∴C(-1,0),∴AC=3-(-1)=4,∵OA=OD=3,∠AOD=90°,∴,设直线CD解析式为y=mx+n,则:,解得∴直线CD解析式为y=3x+3,①当△AOM∽△ACD时,∠AOM=∠ACD,如图2所示,∴OM//CD,∴直线OM的解析式为y=3x,∵抛物线的解析式为y=-x2+2x+3,∴3x=-x2+2x+3,解得:;②当△AMO∽△ACD时,如图3所示,∴∴,过点M作MG⊥x轴于点G,则∠AGM=90°,∵∠OAD=45°,∴∴OG=OA-AG=3-2=1,∴M(1,2),设直线OM解析式为y=m1x,将M(1,2)代入,得:m1=2,∴直线OM解析式为y=2x,∵抛物线的解析式为y=-x2+2x+3∴2x=-x2+2x+3,解得:x=±.综上,点P的横坐标为或±.跟踪训练6:解:(1)解:将A(﹣2,0),B(4,0),D(0,﹣8)代入y=ax2+bx+c,∴,解得,∴y=x2﹣2x﹣8,∵y=x2﹣2x﹣8=(x﹣1)2﹣9,∴E(1,﹣9);(2)①证明:∵PN⊥PM,∴∠MPN=90°,∴∠NPN1+∠MPM1=90°,∵NN1⊥x轴,MM1⊥x轴,∴∠NN1P=∠MM1P=90°,∴∠N1PN+∠PNN1=90°,∴∠MPM1=∠PNN1,∴△PMM1∽△NPN1;②证明:由题意可知平移后的抛物线解析式为y=(x﹣1)2,设N(x1,kx1+m),M(x2,kx2+m),联立方程组y=,整理得x2﹣(2+k)x+1﹣m=0,∴x1+x2=2+k,x1 x2=1﹣m,∵△PMM1∽△NPN1,∴=,即=,∴k+m=(k+m)2,∴k+m=1或k+m=0,∵M、N与P不重合,∴k+m=1,∴k+m为常数.例7:解(1)当y=0时,x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0),点B的坐标为(3,0);当x=0时,y=02﹣2×0﹣3=﹣3,∴点C的坐标为(0,﹣3).(2)∵点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(0,﹣3),∴OA=1,OB=OC=3.∵点E的坐标为(m,0),OE=OF,∴OE=OF=m,BE=CF=3﹣m,∴S=S1+S2= CF OA+ BE OF=×(3﹣m)×1+×(3﹣m)×m=﹣m2+m+=﹣(m﹣1)2+2.∵﹣<0,∴当m=1时,S取得最大值,即当S取最大值时,m的值为1.(3)存在,设点P的坐标为(n,n2﹣2n﹣3).在图(2)中,连接BD,过点Q作QM⊥x轴于点M,过点D作DN∥x轴,过点P作PN∥y轴交DN于点N.∵OB=OC=3,∠BOC=90°,∴△BOC为等腰直角三角形,∴∠OCB=45°,BC=3.∵抛物线的顶点为D,∴点D的坐标为(1,﹣4),∵点B的坐标为(3,0),点C的坐标为(0,﹣3),∴BD==2,CD==,∵BC2+CD2=(3)2+()2=20=BD2,∴∠BCD=90°,∴∠OCD=∠OCB+∠BCD=45°+90°=135°.∵QM∥OC,∴∠CQM=180°﹣∠OCB=180°﹣45°=135°.∵∠PQC=∠ACD,∠PQC=∠PQM+∠CQM,∠ACD=∠ACO+∠OCD,∴∠PQM=∠ACO.又∵QM∥PN,∴∠DPN=∠PQM=∠ACO.又∵∠AOC=∠DNP=90°,∴△AOC∽△DNP,∴=,即=,解得:n1=1(不合题意,舍去),n2=4,∴点P的坐标为(4,5).跟踪训练7:解:(1)在中,令得,令得或,∴,,,设直线CA的解析式为,则,解得,∴直线CA的解析式为;(2)∵直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,∴,且,,,∴,,∵,,∴,是等腰直角三角形,∴,,∴是等腰直角三角形,∴,∵E为GA的中点,∴,∴,解得或,∵时,D与A重合,舍去,∴;(3)由得:或,①若,即,∵且,∴,且,解得;②若,即,可得:且,解得.综上所述,n的取值范围是或.【巩固提升】1.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣).综上所述,符合条件的点P的坐标为(,)或(,﹣).2.解:(1)对直线,当x=0时,y=2,当y=0时,x=4,∴点A的坐标是(0,2),点C的坐标是(4,0),把点A、C两点的坐标代入抛物线的解析式,得:,解得:,∴抛物线的解析式为,∵抛物线的对称轴是直线,C(4,0),∴点B的坐标为(﹣2,0);∴A(0,2),B(﹣2,0),C(4,0),抛物线的解析式是;(2)过点M作ME⊥x轴于点E,交直线AC于点F,如图1所示.设M(m,),则F(m,),∴,∴S四边形ABCM=S△ABC+S△AMC=,∵0<m<4,∴当m=2时,四边形面积最大,最大值为8,此时点M的坐标为(2,2);3.解:(1)解:把x=3,y=0代入y=﹣x2+2mx+3得,﹣9+6m+3m=0,∴m=1,∴y=﹣x2+2x+3;(2)证明:∵y=﹣x2+m(2x+3),∴当2x+3=0时,即x=﹣时,y=﹣,∴D(﹣,﹣);(3)如图,连接OP,设P(m,﹣m2+2m+3),设PD的解析式为:y=kx+b,∴,∴,∴ON=﹣+3,∵S=S△PAM﹣S△BMN,∴S=(S△PAM﹣+S四边形AONM)﹣(S四边形AONM+S△BMN)=S四边形AONP﹣S△AOB,∵S四边形AONP=S△AOP+S△PON=+=+(﹣=﹣+m+,S△AOB==,∴S=﹣+m=﹣(m﹣1)2+,∴当m=1时,S最大=,当m=1时,y=﹣12+2×1+3=4,∴P(1,4).4.解:(1)由题意得,,∴,∴二次函数的表达式为:y=﹣x2﹣2x+3;(2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,∴D(﹣1,4),由﹣x2﹣2x+3=0得,x1=﹣3,x2=1,∴A(﹣3,0),B(1,0),∴AD2=20,∵C(0,3),∴CD2=2,AC2=18,∴AC2+CD2=AD2,∴∠ACD=90°,∴tan∠DAC===,∵∠BOC=90°,∴tan∠BCO==,∴∠DAC=∠BCO;(3)解:如图,作DE⊥y轴于E,作D1F⊥y轴于F,∴DE∥FD1,∴△DEC∽△D1EF,∴=,∴FD1=2DE=2,CF=2CE=2,∴D1(2,1),∴y1的关系式为:y=﹣(x﹣2)2+1,当x=0时,y=﹣3,∴N(0,﹣3),同理可得:,∴,∴OM=3,∴M(3,0),设P(2,m),当 MNQP时,∴MN∥PQ,PQ=MN,∴Q点的横坐标为﹣1,当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,∴Q(﹣1,8),当 MNPQ时,同理可得:点Q横坐标为:5,当x=5时,y=﹣(5﹣2)2+1=﹣8,∴Q′(5,﹣8),综上所述:点Q(﹣1,﹣8)或(5,﹣8).5.解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴解得∴此抛物线的解析式为:(2)当时,,所以,OB=OC=3,∴是等腰直角三角形,以点P、Q、E为顶点的三角形与相似,∴是等腰直角三角形,设点P的坐标为,抛物线的对称轴为直线,设BC的解析式为,将B(﹣3,0),C(0,3)代入得,,解得,,故BC的解析式为,把代入得,,则E点坐标为,如图,当E为直角顶点时,,解得,,(舍去),把代入得,,则P点坐标为,当Q为直角顶点时,PQ=QE,即,解得,(舍去),把代入得,,则P点坐标为;当P为直角顶点时,作PM⊥EQ于M,PM=ME,即,解得,(舍去),则P点坐标为;综上,P点坐标为或.HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览