资源简介 1.1.3 等腰三角形导学案学习目标1、会运用等腰三角形的判定定理其进行简单的证明.2、能用反证法的基本证明思路简单应用.学习重点:等腰三角形的判定定理,并会运用其进行简单的证明.学习难点:反证法的证明方法.一、自学释疑根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题.二、合作探究探究点一、等腰三角形的判定定理问题1:前面我们证明了等腰三角形有两个角相等.反过来有两个角相等的三角形是等腰三角形吗?问题2:如图在△ABC中,∠B=∠C,要证明AB=AC,你是怎样构造的两个三角形全等的,你是怎样证明的?与同伴交流.结论:定理 .简述为: .变式训练1.满足下列条件不是等腰三角形的是( )A.有两个内角相等的三角形 B.有一个角是45 的直角三角形C.有一个角是50 的直角三角形 D.有两个角是15 和150 的三角形2.有一个三角形不同顶点的外角的度数比是3:2:3,则这个三角形是 三角形.探究点二、运用定理问题:已知:如图,AB=DC,BD=CA,BD与CA相交于点E,△AED是等腰三角形吗?请你说明理由,并与同伴交流.变式训练1.如图,在△ABC中,AB=AC=8,D是BC上的动点(D与B、C不重合),且DE∥AC,DF∥AB,则四边形DEAF的周长是 .2.如图,三角形ABC中,AB=AC,∠A=36 , ∠ACB的平分线交AB于点E,D为AC的中点,连接ED.(1)求∠AED的度数;(2)若CE=5,求BC的长.探究点三、反正法问题:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗 如果成立,你能证明它吗 .强化训练:反证法证明:一个三角形中不能有两个角是直角.三、随堂检测1.在△ABC中,∠B=∠C,AB=5,则AC的长( )A.2 B.3C.4 D.52.用反证法证明“aA.a>b B.a≥b C.a=b D.a≤b3.如图,在△ABC中,AD平分∠EAC,且AD∥BC,则△ABC一定是( )A.任意三角形 B.等边三角形 C.等腰三角形 D.直角三角形4.如图,在已知三角形ABC中,BD是∠ABC平分线,∠ABD=360,∠C=720,则图中等腰三角形的个数 .5.如图,在△ABC中,AB=AC,BD和CD平分∠ABC和ACB的角平分线.求证△DBC是等腰三角形.6.用反证法证明:在一个三角形中,至少有一个角大于或等于60°7.如图,△ABC的边AB的延长线上有一点D,过D作DF⊥AC于点F,交BC于点E,且BD=BE,求证:△ABC是等腰三角形.参考答案探究点一、等腰三角形的判定定理问题2:解:可作BC边上的高或∠A的平分线都可以构造两个全等三角形,已知:在△ABC中,∠B=∠C,求证:AB=AC.证法一:作AD⊥BC于点D.(如图所示)在△ABD和△ACD中,∵∠B=∠C, ∠BDA=∠CDA, AD=AD,∴ △ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).证法二:作△ABC顶角的平分线AD交BC于点D.(如图所示)在△ABD和△ACD中,∵∠B=∠C, ∠BAD=∠CAD, AD=AD,∴ △ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).结论:定理:有两个角相等的三角形是等腰三角形简述为:等角对等边.变式训练1.C2.等腰直角三角形探究点二、运用定理问题:解:△AED是等腰三角形.理由如下:∵AB=DC,BD=CA,AD=DA,,∴△ABD≌△DCA(SSS)∴∠ADB=∠DAC(全等三角形的对应角相等)∴AE=DE(等角对等边)∴ △AED是等腰三角形.变式训练1.162.(1)∠AED =54 ,(2)BC=5探究点三、反正法问题:假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此 AB≠AC,结论成立.强化训练已知:△ABC,求证:∠A、∠B、∠C中不能有两个角是直角.证明:假设∠A、∠B、∠C中有两个角是直角,不妨设∠A和∠B是直角,即∠A=90°, ∠B=90°,于是∠A+∠B+∠C=90°+90°+∠C>1 80°这与三角形内角和 定理相矛盾,因此“∠A和∠B都是直角”的假设不成立. 所以,一个三角形中不能有两个角是直角.三、随堂检测1.D2.B3.C4.35.证明:∵AB=AC∴∠ABC=∠ACB 等边对等角∵BD、CD是角平分线∴∠DBC=∠ABC=∠ACB=∠BCD∴ΔDBC是等腰三角形6.证明:假设在一个三角形中,没有一个内角大于或等于60°,即均小于60°, 则三内角和小于180°,与三角形中三内角和等于180°矛盾,故假设不成立.原命题成立.7.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA-∠D,∠C=∠EFC-∠CEF,∵BD=BE,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形. 展开更多...... 收起↑ 资源预览