广东省深圳市北京师范大学南山附属学校中学部2022-2023学年七年级下学期期中考试数学试卷(含答案)

资源下载
  1. 二一教育资源

广东省深圳市北京师范大学南山附属学校中学部2022-2023学年七年级下学期期中考试数学试卷(含答案)

资源简介

北京师范大学南山附属学校中学部期中考试试卷
七年级数学
一、单选题(每小题3分,共30分)
1.化简的结果是( )
A.2 B. C. D.
2.2019年1月8日22时某市某个观察站测得:空气中的PM2.5含量为每立方米,0.000023用科学记数法表示( )
A. B. C. D.
3.下列计算正确的是( )
A. B. C. D.
4.下列说法中正确的是( )
A.两条直线被第三条直线所截,内错角相等
B.在同一平面内,垂直于同一条直线的两条直线平行
C.直线外一点到这条直线的垂线段叫做点到直线的距离
D.在同一平面内不重合的两条直线有平行、相交和垂直三种位置关系.
5.如图,下列条件中,不能判断的是( )
A. B. C. D.
6.已知三角形的两边长分别为和,则第三边的长可以是( )
A. B. C. D.
7.已知,如图,,将一副三角尺如图摆放,让一个顶点和一条边分别放在和上,则( )
A. B. C. D.
8.如图,用尺规作出,作图 迹弧是( )
A.以点为圆心,为半径的圆
B.以点为圆心,为半径的圆
C.以点为圆心,为半径的圆
D.以点为圆心,为半径的圆
9.如图将4个长、宽分别均为,的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )
A.
B.
C.
D.
10.如图,在中,,和的平分线交于点,得,和的角平分线交于点得和的角平分线交于点,……则等于( )度.
A. B. C. D.
二、填空题(每小题3分,共15分)
11.如果一个角等于,那么它的余角是________.
12.若,,则的值为________.
13.若是一个完全平方式,则________.
14.如图,已知是的中线,,,且的周长为16,则的周长是________.
15.如图,已知长方形纸带,将纸带沿折叠后,点、分别落在、的位置,再沿折叠成图,若,则________.
三、解答题(共55分)
16.计算:
(1)
(2)乘法公式计算:
17.(6分)先化简,再求值:,其中,.
18.如图,点、在上,点、分别在、上,且,.
(1)求证:;
(2)若,,求的度数.
19.若的积中不含项与项,求、的值;
20.如图,在中,是边上的高,是的平分线.
(1)若,,求的度数;
(2)如果只知道,那么能得到的度数吗?若能,请你写出求解过程;若不能,请说明理由.
21.阅读材料:若,求,的值.
解:,
,,,,.
根据你的观察,探究下面的问题:
(1),则________,________.
(2)已知,求的值.
(3)已知的三边长、、都是正整数,且满足,求的周长.
22.如图,直线,点是、之间(不在直线,上)的一个动点.
(1)如图1,若与都是锐角,请写出与,之间的数量关系,并证明.
(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点,与交于点,与交于点,点在线段上,连接,有,为多少?
(3)如图3,若点是下方一点,平分,平分,已知,请直接写出的度数.
北师大附中参考答案
一、选择题
1 2 3 4 5 6 7 8 9 10
C C B B B C C D C A
二、填空题
11 12 13 14 15
54 14
三、解答题(共6小题)
16.解:(1)原式 (2)原式
17.解:

当,时,原式.
18.(1)证明:,




(2)解:,





19.解:
积中不含项与项,
,,
,.
20.解:(1)在中,,,

平分,

在中,,,


(2)能,设,则,

平分,

在,,

故若只知道,也能得到.
21.解:(1),.
(2),
,,
解得
(3)
,,
解得,
、、都是的三边且都是正整数

求的周长为9.
22.解:(1),
证明:过作,如下图所示,

(两直线平行,内错角相等),
,,

(两直线平行,内错角相等),


(2),





由(1)可得,,


(3)设交于.
平分,平分,,
,,



由(1)可得,,

展开更多......

收起↑

资源预览