资源简介 中小学教育资源及组卷应用平台【真题汇编】2023年中考数学备考之代数式1.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分. ②分清数量关系.要正确列代数式,只有分清数量之间的关系. ③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用. ⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.【规律方法】列代数式应该注意的四个问题1.在同一个式子或具体问题中,每一个字母只能代表一个量.2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“ ”或者省略不写.3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.2.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.3.同类项(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.同类项中所含字母可以看成是数字、单项式、多项式等.(2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.4.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.5.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.6.规律型:图形的变化类图形的变化类的规律题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【真题汇编】2023年中考数学备考之代数式(选择题60题)满分:120分 建议时间:100分钟学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.列代数式(共6小题,满分12分,每小题2分)1.(2分)(2022 长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )A.8x元 B.10(100﹣x)元C.8(100﹣x)元 D.(100﹣8x)元2.(2分)(2021 青海)一个两位数,它的十位数字是x,个位数字是y,那么这个两位数是( )A.x+y B.10xy C.10(x+y) D.10x+y3.(2分)(2021 温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为( )A.20a元 B.(20a+24)元C.(17a+3.6)元 D.(20a+3.6)元4.(2分)(2021 金华)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%5.(2分)(2020 达州)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是( )A.12(m﹣1) B.4m+8( m﹣2) C.12( m﹣2)+8 D.12m﹣166.(2分)(2019 永州)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为( )A.甲 B.乙 C.丙 D.丁二.代数式求值(共5小题,满分10分,每小题2分)7.(2分)(2022 六盘水)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是( )A.4 B.8 C.16 D.328.(2分)(2021 贺州)如M={1,2,x},我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N={x,1,2},我们说M=N.已知集合A={1,0,a},集合B={,|a|,},若A=B,则b﹣a的值是( )A.﹣1 B.0 C.1 D.29.(2分)(2021 自贡)已知x2﹣3x﹣12=0,则代数式﹣3x2+9x+5的值是( )A.31 B.﹣31 C.41 D.﹣4110.(2分)(2020 潍坊)若m2+2m=1,则4m2+8m﹣3的值为( )A.1 B.2 C.3 D.411.(2分)(2020 重庆)已知a+b=4,则代数式1++的值为( )A.3 B.1 C.0 D.﹣1三.同类项(共6小题,满分12分,每小题2分)12.(2分)(2022 湘潭)下列整式与ab2为同类项的是( )A.a2b B.﹣2ab2 C.ab D.ab2c13.(2分)(2021 河池)下列各式中,与2a2b为同类项的是( )A.﹣2a2b B.﹣2ab C.2ab2 D.2a214.(2分)(2021 上海)下列单项式中,a2b3的同类项是( )A.a3b2 B.3a2b3 C.a2b D.ab315.(2分)(2020 湘潭)已知2xn+1y3与x4y3是同类项,则n的值是( )A.2 B.3 C.4 D.516.(2分)(2019 毕节市)如果3ab2m﹣1与9abm+1是同类项,那么m等于( )A.2 B.1 C.﹣1 D.017.(2分)(2019 黔东南州)如果3ab2m﹣1与9abm+1是同类项,那么m等于( )A.2 B.1 C.﹣1 D.0四.合并同类项(共6小题,满分12分,每小题2分)18.(2分)(2022 西藏)下列计算正确的是( )A.2ab﹣ab=ab B.2ab+ab=2a2b2C.4a3b2﹣2a=2a2b D.﹣2ab2﹣a2b=﹣3a2b219.(2分)(2022 荆州)化简a﹣2a的结果是( )A.﹣a B.a C.3a D.020.(2分)(2021 阿坝州)下列计算正确的是( )A.a5+a2=a7 B.(a3)2=a5 C.a3 a5=a8 D.a6÷a2=a321.(2分)(2021 滨州)下列计算中,正确的是( )A.2a+3a=5a2 B.a2 a3=a6 C.2a 3a=6a2 D.(a2)3=a822.(2分)(2021 资阳)下列计算正确的是( )A.a2+a2=2a4 B.a2 a=a3 C.(3a)2=6a2 D.a6+a2=a323.(2分)(2020 通辽)下列说法不正确的是( )A.2a是2个数a的和 B.2a是2和数a的积C.2a是单项式 D.2a是偶数五.规律型:数字的变化类(共20小题,满分40分,每小题2分)24.(2分)(2022 西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是( )A.﹣ B. C.﹣ D.25.(2分)(2022 牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是( )A. B.﹣ C. D.﹣26.(2分)(2022 新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A.98 B.100 C.102 D.10427.(2分)(2022 云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是( )A.(2n﹣1)xn B.(2n+1)xn C.(n﹣1)xn D.(n+1)xn28.(2分)(2021 攀枝花)观察依次排列的一串单项式x,﹣2x2,4x3,﹣8x4,16x5,…,按你发现的规律继续写下去,第8个单项式是( )A.﹣128x7 B.﹣128x8 C.﹣256x7 D.﹣256x829.(2分)(2021 镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是( )A.A1 B.B1 C.A2 D.B330.(2分)(2021 台湾)已知a1,a2,…,a40为一等差数列,其中a1为正数,且a20+a22=0.判断下列叙述何者正确?( )A.a21+a22>0 B.a21+a22<0 C.a21×a22>0 D.a21×a22<031.(2分)(2021 济宁)按规律排列的一组数据:,,□,,,,…,其中□内应填的数是( )A. B. C. D.32.(2分)(2021 十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2025 B.2023 C.2021 D.201933.(2分)(2021 随州)根据图中数字的规律,若第n个图中的q=143,则p的值为( )A.100 B.121 C.144 D.16934.(2分)(2021 云南)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( )A.n2an+1 B.n2an﹣1 C.nnan+1 D.(n+1)2an35.(2分)(2020 娄底)下列各正方形中的四个数具有相同的规律,根据规律,x的值为( )A.135 B.153 C.170 D.18936.(2分)(2020 西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于( )A.18 B.19 C.20 D.2137.(2分)(2020 玉林)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于( )A.499 B.500 C.501 D.100238.(2分)(2020 云南)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)na C.2n﹣1a D.2na39.(2分)(2020 牡丹江)一列数1,5,11,19…按此规律排列,第7个数是( )A.37 B.41 C.55 D.7140.(2分)(2020 天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是( )A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣241.(2分)(2019 云南)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是( )A.(﹣1)n﹣1x2n﹣1 B.(﹣1)nx2n﹣1C.(﹣1)n﹣1x2n+1 D.(﹣1)nx2n+142.(2分)(2019 贺州)计算++++…+的结果是( )A. B. C. D.43.(2分)(2019 常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,……,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( )A.0 B.1 C.7 D.8六.规律型:图形的变化类(共17小题,满分34分,每小题2分)44.(2分)(2022 济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )A.297 B.301 C.303 D.40045.(2分)(2022 广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为( )A.252 B.253 C.336 D.33746.(2分)(2022 玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A.4 B.2 C.2 D.047.(2分)(2022 荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形AnBn nDn的面积是( )A. B. C. D.48.(2分)(2022 江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是( )A.9 B.10 C.11 D.1249.(2分)(2022 重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32 B.34 C.37 D.4150.(2分)(2022 重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A.15 B.13 C.11 D.951.(2分)(2021 阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓形沿x轴正方向无滑动滚动,当圆心经过的路径长为2021π时,圆心的横坐标是( )A.2020π B.1010π+2020 C.2021π D.1011π+202052.(2分)(2021 玉林)观察下列树枝分叉的规律图,若第n个图树枝数用Yn表示,则Y9﹣Y4=( )A.15×24 B.31×24 C.33×24 D.63×2453.(2分)(2020 日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是( )A.59 B.65 C.70 D.7154.(2分)(2020 十堰)根据图中数字的规律,若第n个图中出现数字396,则n=( )A.17 B.18 C.19 D.2055.(2分)(2020 武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是( )A.160 B.128 C.80 D.4856.(2分)(2020 德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.20257.(2分)(2020 聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图 表示,那么第50个图形中的白色小正方形地砖的块数是( )A.150 B.200 C.355 D.50558.(2分)(2020 重庆)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A.10 B.15 C.18 D.2159.(2分)(2020 重庆)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18 B.19 C.20 D.2160.(2分)(2020 常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A.C、E B.E、F C.G、C、E D.E、C、F【真题汇编】2023年中考数学备考之代数式(选择题60题)参考答案与试题解析一.列代数式(共6小题,满分12分,每小题2分)1.(2分)(2022 长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )A.8x元 B.10(100﹣x)元C.8(100﹣x)元 D.(100﹣8x)元【解析】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:C.2.(2分)(2021 青海)一个两位数,它的十位数字是x,个位数字是y,那么这个两位数是( )A.x+y B.10xy C.10(x+y) D.10x+y【解析】解:一个两位数,它的十位数字是x,个位数字是y,这个两位数10x+y.故选:D.3.(2分)(2021 温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为( )A.20a元 B.(20a+24)元C.(17a+3.6)元 D.(20a+3.6)元【解析】解:根据题意知:17a+(20﹣17)(a+1.2)=(20a+3.6)(元).故选:D.4.(2分)(2021 金华)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【解析】解:设商品原标价为a元,A.先打九五折,再打九五折的售价为:0.95×0.95a=0.9025a(元);B.先提价50%,再打六折的售价为:(1+50%)×0.6a=0.9a(元);C.先提价30%,再降价30%的售价为:(1+30%)(1﹣30%)a=0.91a(元);D.先提价25%,再降价25%的售价为:(1+25%)(1﹣25%)a=0.9375a(元);∵0.9a<0.9025a<0.91a<0.9375a,∴B选项的调价方案调价后售价最低,故选:B.5.(2分)(2020 达州)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是( )A.12(m﹣1) B.4m+8( m﹣2) C.12( m﹣2)+8 D.12m﹣16【解析】解:由题意得,当每条棱上的小球数为m时,正方体上的所有小球数为12m﹣8×2=12m﹣16.而12(m﹣1)=12m﹣12≠12m﹣16,4m+8( m﹣2)=12m﹣16,12( m﹣2)+8=12m﹣16,所以A选项表达错误,符合题意;B、C、D选项表达正确,不符合题意.故选:A.6.(2分)(2019 永州)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为( )A.甲 B.乙 C.丙 D.丁【解析】解:∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适,故选:A.二.代数式求值(共5小题,满分10分,每小题2分)7.(2分)(2022 六盘水)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是( )A.4 B.8 C.16 D.32【解析】解:∵(x+y)4=x4+4x3y+6x2y2+4xy3+y4,∴a1=1,a2=4,a3=6,a4=4,a5=1,∴a1+a2+a3+a4+a5=1+4+6+4+1=16,故选:C.8.(2分)(2021 贺州)如M={1,2,x},我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N={x,1,2},我们说M=N.已知集合A={1,0,a},集合B={,|a|,},若A=B,则b﹣a的值是( )A.﹣1 B.0 C.1 D.2【解析】解:∵A=B,a≠0,≠0,∴=0,=1,|a|=a或=0,=a,|a|=1,∴b=0,a=1(舍去)或b=0,a=﹣1,∴b﹣a=0﹣(﹣1)=1,故选:C.9.(2分)(2021 自贡)已知x2﹣3x﹣12=0,则代数式﹣3x2+9x+5的值是( )A.31 B.﹣31 C.41 D.﹣41【解析】解:∵x2﹣3x﹣12=0,∴x2﹣3x=12.原式=﹣3(x2﹣3x)+5=﹣3×12+5=﹣36+5=﹣31.故选:B.10.(2分)(2020 潍坊)若m2+2m=1,则4m2+8m﹣3的值为( )A.1 B.2 C.3 D.4【解析】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:A.11.(2分)(2020 重庆)已知a+b=4,则代数式1++的值为( )A.3 B.1 C.0 D.﹣1【解析】解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.三.同类项(共6小题,满分12分,每小题2分)12.(2分)(2022 湘潭)下列整式与ab2为同类项的是( )A.a2b B.﹣2ab2 C.ab D.ab2c【解析】解:在a2b,﹣2ab2,ab,ab2c四个整式中,与ab2为同类项的是:﹣2ab2,故选:B.13.(2分)(2021 河池)下列各式中,与2a2b为同类项的是( )A.﹣2a2b B.﹣2ab C.2ab2 D.2a2【解析】解:2a2b中含有两个字母:a、b,且a的指数是2,b的指数是1,观察选项,与2a2b是同类项的是﹣2a2b.故选:A.14.(2分)(2021 上海)下列单项式中,a2b3的同类项是( )A.a3b2 B.3a2b3 C.a2b D.ab3【解析】解:A、字母a、b的指数不相同,不是同类项,故本选项不符合题意;B、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C、字母b的指数不相同,不是同类项,故本选项不符合题意;D、相同字母a的指数不相同,不是同类项,故本选项不符合题意;故选:B.15.(2分)(2020 湘潭)已知2xn+1y3与x4y3是同类项,则n的值是( )A.2 B.3 C.4 D.5【解析】解:∵2xn+1y3与是同类项,∴n+1=4,解得,n=3,故选:B.16.(2分)(2019 毕节市)如果3ab2m﹣1与9abm+1是同类项,那么m等于( )A.2 B.1 C.﹣1 D.0【解析】解:根据题意可得:2m﹣1=m+1,解得:m=2,故选:A.17.(2分)(2019 黔东南州)如果3ab2m﹣1与9abm+1是同类项,那么m等于( )A.2 B.1 C.﹣1 D.0【解析】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.四.合并同类项(共6小题,满分12分,每小题2分)18.(2分)(2022 西藏)下列计算正确的是( )A.2ab﹣ab=ab B.2ab+ab=2a2b2C.4a3b2﹣2a=2a2b D.﹣2ab2﹣a2b=﹣3a2b2【解析】解:A、2ab﹣ab=(2﹣1)ab=ab,计算正确,符合题意;B、2ab+ab=(2+1)ab=3ab,计算不正确,不符合题意;C、4a3b2与﹣2a不是同类项,不能合并,计算不正确,不符合题意;D、﹣2ab2与﹣a2b不是同类项,不能合并,计算不正确,不符合题意.故选:A.19.(2分)(2022 荆州)化简a﹣2a的结果是( )A.﹣a B.a C.3a D.0【解析】解:a﹣2a=(1﹣2)a=﹣a.故选:A.20.(2分)(2021 阿坝州)下列计算正确的是( )A.a5+a2=a7 B.(a3)2=a5 C.a3 a5=a8 D.a6÷a2=a3【解析】解:a5与a2不是同类项,不能合并,故选项A不合题意;(a3)2=a6,故选项B不合题意;a3 a5=a8,故选项C符合题意;a6÷a2=a4,故选项D不合题意.故选:C.21.(2分)(2021 滨州)下列计算中,正确的是( )A.2a+3a=5a2 B.a2 a3=a6 C.2a 3a=6a2 D.(a2)3=a8【解析】解:2a+3a=5a,故选项A不符合题意;a2 a3=a5,故选项B不符合题意;2a 3a=6a2,故选项C符合题意;(a2)3=a6,故选项D不符合题意;故选:C.22.(2分)(2021 资阳)下列计算正确的是( )A.a2+a2=2a4 B.a2 a=a3 C.(3a)2=6a2 D.a6+a2=a3【解析】解:A.a2+a2=2a2,因此选项A不正确;B.a2 a=a2+1=a3,因此选项B正确;C.(3a)2=9a2,因此选项C不正确;D.a6与a2不是同类项,不能合并计算,因此选项D不正确;故选:B.23.(2分)(2020 通辽)下列说法不正确的是( )A.2a是2个数a的和 B.2a是2和数a的积C.2a是单项式 D.2a是偶数【解析】解:A.2a=a+a,即2a是2个数a的和,说法正确;B.2a是2和数a的积,说法正确;C.2a是单项式,说法正确;D.2a不一定是偶数,故原说法错误.故选:D.五.规律型:数字的变化类(共20小题,满分40分,每小题2分)24.(2分)(2022 西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是( )A.﹣ B. C.﹣ D.【解析】解:原数据可转化为:,﹣,,﹣,,﹣,…,∴=(﹣1)1+1×,﹣=(﹣1)2+1×,=(﹣1)3+1×,...∴第n个数为:(﹣1)n+1,∴第10个数为:(﹣1)10+1×=﹣.故选:A.25.(2分)(2022 牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是( )A. B.﹣ C. D.﹣【解析】解:根据给出的数据特点可知第n个数是×(﹣1)n+1,∴第12个数就是×(﹣1)12+1=﹣.故选:D.26.(2分)(2022 新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A.98 B.100 C.102 D.104【解析】解:由三角形的数阵知,第n行有n个偶数,则得出前9行有1+2+3+4+5+6+7+8+9=45个偶数,∴第9行最后一个数为90,∴第10行第5个数是90+2×5=100,故选:B.27.(2分)(2022 云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是( )A.(2n﹣1)xn B.(2n+1)xn C.(n﹣1)xn D.(n+1)xn【解析】解:∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)xn,故选:A.28.(2分)(2021 攀枝花)观察依次排列的一串单项式x,﹣2x2,4x3,﹣8x4,16x5,…,按你发现的规律继续写下去,第8个单项式是( )A.﹣128x7 B.﹣128x8 C.﹣256x7 D.﹣256x8【解析】解:(4x3)÷(﹣2x2)=﹣2x,(﹣8x4)÷(4x3)=﹣2x,(16x5)÷(﹣8x4)=﹣2x,…所以从第二个单项式起,每一个单项式与它前面的单项式的商都是﹣2x;按发现的规律可知:x,﹣2x2,4x3=22x3,﹣8x4=﹣23x4,16x5=24x5,…所以第8个单项式是﹣27x8=﹣128x8.故选:B.29.(2分)(2021 镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是( )A.A1 B.B1 C.A2 D.B3【解析】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故选:B.30.(2分)(2021 台湾)已知a1,a2,…,a40为一等差数列,其中a1为正数,且a20+a22=0.判断下列叙述何者正确?( )A.a21+a22>0 B.a21+a22<0 C.a21×a22>0 D.a21×a22<0【解析】解:设公差为d,∵a20+a22=0,∴a21﹣d+a21+d=0,解得a21=0,∵a1,a2,…,a40为一等差数列,其中a1为正数,∴a22<0,∴a21+a22<0,故选项A错误,选项B正确,a21×a22=0,故选项C、D均错误;故选:B.31.(2分)(2021 济宁)按规律排列的一组数据:,,□,,,,…,其中□内应填的数是( )A. B. C. D.【解析】解:观察这排数据发现:分子为连续的奇数,分母为序号的平方+1,∴第n个数据为:.当n=3时,□的分子为5,分母=32+1=10,∴这个数为=,故选:D.32.(2分)(2021 十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2025 B.2023 C.2021 D.2019【解析】解:由题意可知:行数为1的方阵内包含“1”,共1个数;行数为2的方阵内包含“1、3、5、7”,共22个数;行数为3的方阵内包含“1、3、5、7、9、11、13、15、17”,共32个数;∴行数为32的方阵内包含“1、3、5、7、......”共322个数,即共1024个数,∴位于第32行第13列的数是连续奇数的第(1024﹣12)=1012个数,∴位于第32行第13列的数是:2×1012﹣1=2023.故选:B.33.(2分)(2021 随州)根据图中数字的规律,若第n个图中的q=143,则p的值为( )A.100 B.121 C.144 D.169【解析】解:通过观察可得规律:p=n2,q=(n+1)2﹣1,∵q=143,∴(n+1)2﹣1=143,解得:n=11,∴p=n2=112=121,故选:B.34.(2分)(2021 云南)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( )A.n2an+1 B.n2an﹣1 C.nnan+1 D.(n+1)2an【解析】解:∵第1个单项式a2=12 a1+1,第2个单项式4a3=22 a2+1,第3个单项式9a4=32 a3+1,第4个单项式16a5=42 a4+1,……∴第n(n为正整数)个单项式为n2an+1,故选:A.35.(2分)(2020 娄底)下列各正方形中的四个数具有相同的规律,根据规律,x的值为( )A.135 B.153 C.170 D.189【解析】解:分析题目可得4=2×2,6=3×2,8=4×2;2=1+1,3=2+1,4=3+1;∴18=2b,b=a+1.∴a=8,b=9.又∵9=2×4+1,20=3×6+2,35=4×8+3,∴x=18b+a=18×9+8=170.故选:C.36.(2分)(2020 西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于( )A.18 B.19 C.20 D.21【解析】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n﹣1)+1=6n﹣5,所以6n﹣5=103,解得n=18.答:第n个相同的数是103,则n等于18.故选:A.37.(2分)(2020 玉林)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于( )A.499 B.500 C.501 D.1002【解析】解:由题意,得第n个数为2n,那么2n+2(n﹣1)+2(n﹣2)=3000,解得:n=501,故选:C.38.(2分)(2020 云南)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)na C.2n﹣1a D.2na【解析】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.39.(2分)(2020 牡丹江)一列数1,5,11,19…按此规律排列,第7个数是( )A.37 B.41 C.55 D.71【解析】解:1=1×2﹣1,5=2×3﹣1,11=3×4﹣1,19=4×5﹣1,…第n个数为n(n+1)﹣1,则第7个数是:55.故选:C.40.(2分)(2020 天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是( )A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【解析】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2101﹣2)=S(2101﹣1)=S(2S﹣1)=2S2﹣S.故选:A.41.(2分)(2019 云南)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是( )A.(﹣1)n﹣1x2n﹣1 B.(﹣1)nx2n﹣1C.(﹣1)n﹣1x2n+1 D.(﹣1)nx2n+1【解析】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.42.(2分)(2019 贺州)计算++++…+的结果是( )A. B. C. D.【解析】解:原式===.故选:B.43.(2分)(2019 常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,……,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( )A.0 B.1 C.7 D.8【解析】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴70=1,70+71=8,70+71+72=7,70+71+72+73=0,个位数和4个数一循环,∵(2019+1)÷4=505,∴70+71+72+…+72019的结果的个位数字是:0.故选:A.六.规律型:图形的变化类(共17小题,满分34分,每小题2分)44.(2分)(2022 济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )A.297 B.301 C.303 D.400【解析】解:观察图形可知:摆第1个图案需要4个圆点,即4+3×0;摆第2个图案需要7个圆点,即4+3=4+3×1;摆第3个图案需要10个圆点,即4+3+3=4+3×2;摆第4个图案需要13个圆点,即4+3+3+3=4+3×3;…第n个图摆放圆点的个数为:4+3(n﹣1)=3n+1,∴第100个图放圆点的个数为:3×100+1=301.故选:B.45.(2分)(2022 广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为( )A.252 B.253 C.336 D.337【解析】解:由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)根小木棒,当8n﹣2=2022时,解得n=253,故选:B.46.(2分)(2022 玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A.4 B.2 C.2 D.0【解析】解:∵红跳棋从A点按顺时针方向1秒钟跳1个顶点,∴红跳棋每过6秒返回到A点,2022÷6=337,∴经过2022秒钟后,红跳棋跳回到A点,∵黑跳棋从A点按逆时针方向3秒钟跳1个顶点,∴黑跳棋每过18秒返回到A点,2022÷18=112 6,∴经过2022秒钟后,黑跳棋跳到E点,连接AE,过点F作FM⊥AE,由题意可得:AF=AE=2,∠AFE=120°,∴∠FAE=30°,在Rt△AFM中,AM=AF=,∴AE=2AM=2,∴经过2022秒钟后,两枚跳棋之间的距离是2.故选:B.47.(2分)(2022 荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形AnBn nDn的面积是( )A. B. C. D.【解析】解:如图,连接A1C1,D1B1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=ab,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得Sn=,故选:A.48.(2分)(2022 江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是( )A.9 B.10 C.11 D.12【解析】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.49.(2分)(2022 重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32 B.34 C.37 D.41【解析】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有(4n+1)个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.50.(2分)(2022 重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A.15 B.13 C.11 D.9【解析】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.51.(2分)(2021 阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓形沿x轴正方向无滑动滚动,当圆心经过的路径长为2021π时,圆心的横坐标是( )A.2020π B.1010π+2020 C.2021π D.1011π+2020【解析】解:由题知,图形每旋转一周,圆心的路径循环一次,且路径长度刚好为以2为半径的圆的周长,即4π,2021π÷4π=505(圈),即当圆心经过的路径长为2021π时,图形旋转了505圈,∵图形每旋转一圈横坐标增加2π+4,∴当图形旋转505圈时的横坐标为(2π+4)×505=1010π+2020,再转圈横坐标增加×4π=π,∴当圆心经过的路径长为2021π时,圆心的横坐标是1010π+2020+π=1011π+2020,故选:D.52.(2分)(2021 玉林)观察下列树枝分叉的规律图,若第n个图树枝数用Yn表示,则Y9﹣Y4=( )A.15×24 B.31×24 C.33×24 D.63×24【解析】解:由题意得:第1个图:Y1=1,第2个图:Y2=3=1+2,第3个图:Y3=7=1+2+22,第4个图:Y4=15=1+2+22+23, 第9个图:Y9=1+2+22+23+24+25+26+27+28,∴Y9﹣Y4=24+25+26+27+28=24(1+2+22+23+24)=24×(3+4+8+16)=24×31.故选:B.53.(2分)(2020 日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是( )A.59 B.65 C.70 D.71【解析】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=.故选:C.54.(2分)(2020 十堰)根据图中数字的规律,若第n个图中出现数字396,则n=( )A.17 B.18 C.19 D.20【解析】解:根据图形规律可得:上三角形的数据的规律为:2n(1+n),若2n(1+n)=396,解得n不为正整数,舍去;下左三角形的数据的规律为:n2﹣1,若n2﹣1=396,解得n不为正整数,舍去;下中三角形的数据的规律为:2n﹣1,若2n﹣1=396,解得n不为正整数,舍去;下右三角形的数据的规律为:n(n+4),若n(n+4)=396,解得n=18,或n=﹣22,舍去故选:B.55.(2分)(2020 武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是( )A.160 B.128 C.80 D.48【解析】解:观察图象可知(4)中共有2×4×5=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.56.(2分)(2020 德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202【解析】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n﹣1个图案有2(1+2+…+n+1)+2(n﹣2)=n2+5n﹣2枚棋子,第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.57.(2分)(2020 聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图 表示,那么第50个图形中的白色小正方形地砖的块数是( )A.150 B.200 C.355 D.505【解析】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形,则图 的白色小正方形地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.58.(2分)(2020 重庆)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A.10 B.15 C.18 D.21【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.59.(2分)(2020 重庆)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18 B.19 C.20 D.21【解析】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.60.(2分)(2020 常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A.C、E B.E、F C.G、C、E D.E、C、F【解析】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时p是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7m+t(t=1,2,3,4,5,6,m为正整数)代入可得,k(k+1)﹣7p=7m+t(t+1),这时m是整数,由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览