(新人教A版强基版)2024届高考一轮复习数学 第一章 §1.1 集 合 (课件+学案)

资源下载
  1. 二一教育资源

(新人教A版强基版)2024届高考一轮复习数学 第一章 §1.1 集 合 (课件+学案)

资源简介

(共59张PPT)
§1.1 集 合
第一章 集合、常用逻辑用语、不等式
1.了解集合的含义,了解全集、空集的含义.
2.理解元素与集合的属于关系,理解集合间的包含和相等关系.
3.会求两个集合的并集、交集与补集.
4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图
表示集合间的基本关系和基本运算.
考试要求
内容索引
第一部分
第二部分
第三部分
落实主干知识
探究核心题型
课时精练
落实主干知识




1.集合与元素
(1)集合中元素的三个特性:________、_______、________.
(2)元素与集合的关系是_____或_______,用符号___或____表示.
(3)集合的表示法:_______、_______、_______.
确定性
互异性
无序性
属于
不属于


列举法
描述法
图示法
(4)常见数集的记法
集合 非负整数集(或自然数集) 正整数集 整数集 有理数集 实数集
符号 ___ N*(或N+) ___ ___ ___
N
Z
Q
R
2.集合的基本关系
(1)子集:一般地,对于两个集合A,B,如果集合A中_____________都是集合B中的元素,就称集合A为集合B的子集,记作______(或B A).
(2)真子集:如果集合A B,但存在元素x∈B,且______,就称集合A是集合B的真子集,记作_______(或B?A).
(3)相等:若A B,且_____,则A=B.
(4)空集:不含任何元素的集合叫做空集,记为 .空集是___________的子集,是______________的真子集.
任意一个元素
A B
x A
A?B
B A
任何集合
任何非空集合
3.集合的基本运算
表示 运算   集合语言 图形语言 记法
并集 ________________ ______
交集 ________________ ______
补集 ________________ ____
{x|x∈A,或x∈B}
A∪B
{x|x∈A,且x∈B}
A∩B
{x|x∈U,且x A}
UA
1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.
2.A∩B=A A B,A∪B=A B A.
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)集合{x∈N|x3=x},用列举法表示为{-1,0,1}.(  )
(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(  )
(3)若1∈{x2,x},则x=-1或x=1.(  )
(4)对任意集合A,B,都有(A∩B) (A∪B).(  )

×
×
×
1.(2022·新高考全国Ⅱ)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B等于
A.{-1,2} B.{1,2}
C.{1,4} D.{-1,4}

由|x-1|≤1,得-1≤x-1≤1,解得0≤x≤2,所以B={x|0≤x≤2},所以A∩B={1,2},故选B.
2.下列集合与集合A={2 022,1}相等的是
A.(1,2 022)
B.{(x,y)|x=2 022,y=1}
C.{x|x2-2 023x+2 022=0}
D.{(2 022,1)}

(1,2 022)表示一个点,不是集合,A不符合题意;
集合{(x,y)|x=2 022,y=1}的元素是点,与集合A不相等,B不符合题意;
{x|x2-2 023x+2 022=0}={2 022,1}=A,故C符合题意;
集合{(2 022,1)}的元素是点,与集合A不相等,D不符合题意.
3.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2},则A∪B=___________, U(A∩B)=______________.
{x|x≥-1}
{x|x<2或x≥3}
因为A={x|-1≤x<3},B={x|2x-4≥x-2}={x|x≥2},
所以A∪B={x|x≥-1},A∩B={x|2≤x<3},
U(A∩B)={x|x<2或x≥3}.
探究核心题型

二部

例1 (1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则集合A∩B的元素个数为
A.0   B.1   C.2   D.3

如图,函数y=x与y=x2的图象有两个交点,
故集合A∩B有两个元素.
题型一
集合的含义与表示
(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为
A.1 B.1或0
C.0 D.-1或0

∵-1∈A,
若a-2=-1,即a=1时,A={1,-1,-1},不符合集合元素的互异性;
若a2-a-1=-1,即a=1(舍去)或a=0时,
A={1,-2,-1},
故a=0.
解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.
思维升华
跟踪训练1 (1)(多选)若集合M={x|x-2<0,x∈N},则下列四个命题中,错误的命题是
A.0 M B.{0}∈M
C.{1} M D.1 M



对于A,因为M={x|x-2<0,x∈N},所以0∈M,所以A错误;
对于B,因为{0}是集合,且0∈M,所以{0} M,所以B错误;
对于C,因为1∈M,所以{1} M,所以C正确;
对于D,因为1是元素,1∈M,所以D错误.
(2)(2023·聊城模拟)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为
A.2   B.3   C.4   D.5

因为A={0,1,2},a∈A,b∈A,
所以ab=0或ab=1或ab=2或ab=4,
故B={ab|a∈A,b∈A}={0,1,2,4},
即集合B中含有4个元素.
例2 (1)(2022·宜春质检)已知集合A={x|y=ln(x-2)},B={x|x≥-3},则下列结论正确的是
A.A=B B.A∩B=
C.A?B D.B A

题型二
集合间的基本关系
由题设,可得A={x|x>2},
又B={x|x≥-3},
所以A是B的真子集,
故A,B,D错误,C正确.
(2)设集合A={x|-1≤x+1≤2},B={x|m-1≤x≤2m+1},当x∈Z时,集合A的真子集有____个;当B A时,实数m的取值范围是____________
__________.
15
(-∞,-2)
∪[-1,0]
A={x|-2≤x≤1},
若x∈Z,则A={-2,-1,0,1},
故集合A的真子集有24-1=15(个).
由B A,得①若B= ,则2m+1解得-1≤m≤0,
综上,实数m的取值范围是(-∞,-2)∪[-1,0].
(1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.
(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.
跟踪训练2 (1)设集合M={x|x>4},N={x|x2>4},则
A.M N B.N M
C.M RN D.N RM

N={x|x2>4}={x|x>2或x<-2},
RN={x|-2≤x≤2}, RM={x|x≤4},
∴M N.
(2)函数f(x)= 的定义域为A,集合B={x|-a≤x≤4-a},若B A,则实数a的取值范围是_______________________.
(-∞,-3]∪[5,+∞)
由x2-2x-3≥0,得x≥3或x≤-1,
即A={x|x≥3或x≤-1}.
∵B A,
显然B≠ ,
∴4-a≤-1或-a≥3,
解得a≥5或a≤-3,
故实数a的取值范围是(-∞,-3]∪[5,+∞).
命题点1 集合的运算
例3 (1)(2022·新高考全国Ⅰ)若集合M={x| <4},N={x|3x≥1},则M∩N等于
题型三
集合的基本运算

(2)如图所示,已知全集U=R,集合A={1,3,5,7},B={4,5,6,7,8},则图中阴影部分表示的集合为
A.{1,3} B.{5,7}
C.{1,3,5} D.{1,3,7}

Venn图表示的集合为A∩( UB),
所以A∩( UB)={1,3}.
命题点2 利用集合的运算求参数的值(范围)
例4 已知集合A={x|2m},且( RA)∪B=R,则实数m的取值范围是
A.m≥2 B.m<2
C.m≤2 D.m>2
∵A={x|2∴ RA=(-∞,2]∪[3,+∞),
∵( RA)∪B=R,∴m≤2.

对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.
跟踪训练3 (1)(2022·吕梁模拟)已知集合A={x|x2-5x-6<0},B={-2,1,4,8},则A∩B等于
A.{-2,1} B.{1,8}
C.{1,4} D.{4,8}

因为A={x|x2-5x-6<0}={x|-1所以A∩B={1,4}.
(2)(2023·驻马店模拟)已知集合A={x|(x-1)(x-4)<0},B={x|x>a},若A∪B={x|x>1},则a的取值范围是
A.[1,4) B.(1,4)
C.[4,+∞) D.(4,+∞)

由题意可得A={x|1因为A∪B={x|x>1},
所以1≤a<4.
课时精练

三部

1.(2022·全国乙卷)设全集U={1,2,3,4,5},集合M满足 UM={1,3},则
A.2∈M B.3∈M
C.4 M D.5 M
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

基础保分练
由题意知M={2,4,5},故选A.
2. (2022·焦作模拟)设集合A={0,1,2},B={x∈Z|-2A.{0,1} B.{-1,0}
C.{-1,0,1,2} D.{0,1,2}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
因为B={-1,0,1},A={0,1,2},
所以A∪B={-1,0,1,2}.
3.(2022·娄底质检)集合M={(x,y)|2x-y=0},N={(x,y)|x+y-3=0},则M∩N等于
A.{(2,-1)} B.{2,-1}
C.{(1,2)} D.{1,2}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4.(2023·连云港质检)设全集U=R,集合A={x|1A.(1,2) B.(1,2]
C.(2,4) D.[2,4)

由已知可得 UB={x|x≤0或x≥2},
因此,A∩( UB)={x|2≤x<4}=[2,4).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
5.(2022·海南模拟)已知集合A={x|x2≤1},集合B={x|x∈Z且x+1∈A},则B等于
A.{-1,0,1} B.{-2,-1,0}
C.{-2,-1,0,1} D.{-2,-1,0,1,2}

因为集合A={x|x2≤1},
所以A={x|-1≤x≤1},
在集合B中,由x+1∈A,得-1≤x+1≤1,即-2≤x≤0,又x∈Z,
所以x=-2,-1,0,即B={-2,-1,0}.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
6.(2022·怀仁模拟)已知集合A={x|1m},若A∩( RB)= ,则实数m的取值范围为
A.(-∞,1] B.(-∞,1)
C.[1,+∞) D.(1,+∞)

由题知A∩( RB)= ,得A B,则m≤1.
7.(多选)已知集合A={1,3,m2},B={1,m}.若A∪B=A,则实数m的值为
A.0   B.1   C.2   D.3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16


因为A∪B=A,所以B A.
因为A={1,3,m2},B={1,m},
所以m2=m或m=3,解得m=0或m=1或m=3.
当m=0时,A={1,3,0},B={1,0},符合题意;
当m=1时,集合A、集合B均不满足集合元素的互异性,不符合题意;
当m=3时,A={1,3,9},B={1,3},符合题意.
综上,m=0或3.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
8.(多选)已知全集U的两个非空真子集A,B满足( UA)∪B=B,则下列关系一定正确的是
A.A∩B= B.A∩B=B
C.A∪B=U D.( UB)∪A=A


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
令U={1,2,3,4},A={2,3,4},B={1,2},满足( UA)∪B=B,
但A∩B≠ ,A∩B≠B,故A,B均不正确;
由( UA)∪B=B,知 UA B,
∴U=A∪( UA) (A∪B),∴A∪B=U,
由 UA B,知 UB A,
∴( UB)∪A=A,故C,D均正确.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
9.(2023·金华模拟)已知集合U={1,2,3,4,5,6},S={1,3,5},T={2,3,6},则S∩( UT)=_______,集合S共有____个子集.
{1,5}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
8
由题意可得 UT={1,4,5},
则S∩( UT)={1,5}.
集合S的子集有23个,即8个.
10.(2023·石家庄模拟)已知全集U=R,集合M={x∈Z||x-1|<3},N={-4,-2,0,1,5},则Venn图中阴影部分的集合为__________.
{-1,2,3}
集合M={x∈Z||x-1|<3}={x∈Z|-3则Venn图中阴影部分表示的集合是M∩( RN)={-1,2,3}.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
11.已知集合A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,则m
的值可能是___________.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
由x2+x-6=0,得x=2或x=-3,
所以A={x|x2+x-6=0}={-3,2},
因为A∪B=A,所以B A,
当B= 时,B A成立,此时方程mx+1=0无解,得m=0;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
12.已知集合A={x|(x+3)(x-3)≤0},B={x|2m-3≤x≤m+1}.当m=-1时,则A∪B=________;若A∩B=B,则m的取值范围为________________.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
[-5,3]
[0,2]∪(4,+∞)
A={x|-3≤x≤3},
当m=-1时,B={x|-5≤x≤0},
此时A∪B=[-5,3].
由A∩B=B可知B A.
若B= ,则2m-3>m+1解得m>4;
综上所述,实数m的取值范围为[0,2]∪(4,+∞).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
13.(多选)已知全集U={x∈N|log2x<3},A={1,2,3}, U(A∩B)={1,2,4,5,6,7},则集合B可能为
A.{2,3,4} B.{3,4,5}
C.{4,5,6} D.{3,5,6}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
综合提升练


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
由log2x<3得0因为 U(A∩B)={1,2,4,5,6,7},则有A∩B={3},3∈B,C不正确;
若B={2,3,4},则A∩B={2,3}, U(A∩B)={1,4,5,6,7},矛盾,A不正确;
若B={3,4,5},则A∩B={3}, U(A∩B)={1,2,4,5,6,7},B正确;
若B={3,5,6},则A∩B={3}, U(A∩B)={1,2,4,5,6,7},D正确.
14.某小区连续三天举办公益活动,第一天有190人参加,第二天有130人参加,第三天有180人参加,其中,前两天都参加的有30人,后两天都参加的有40人.第一天参加但第二天没参加活动的有_______人,这三天参加活动的最少有________人.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
160
290
根据题意画出Venn图,如图所示,
a表示只参加第一天的人,
b表示只参加第二天的人,
c表示只参加第三天的人,
d表示只参加第一天与第二天的人,
e表示只参加第一天与第三天的人,
f表示只参加第二天与第三天的人,
g表示三天都参加的人,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
∴要使总人数最少,则令g最大,其次d,e,f也尽量大,d+g=30,f+g=40,
∴a+e=160,即第一天参加但第二天没参加的有160人,
∴gmax=30,d=0,f=10,a+d+g+e=190,
∴c+e=140,∴emax=140,∴c=0,a=20,
则这三天参加活动的最少有a+b+c+…+g=20+90+0+0+140+10+30=290(人).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
15.设全集为U,有以下四个关系式:
甲:A∩B=A;乙:A∪B=B;丙: UA UB;丁:( UA)∪( UB)= UA.
如果有且只有一个关系式不成立,则该式是
A.甲 B.乙
C.丙 D.丁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
拓展冲刺练

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
由题意,甲:A∩B=A A B,
乙:A∪B=B A B,
丙: UA UB B A,
丁:( UA)∪( UB)= UA UB UA A B,
由于甲、乙、丁是等价的,故如果有且只有一个关系式不成立,则该式是丙.
16.对于非空数集M,定义f(M)表示该集合中所有元素的和.给定集合S={2,3,4,5},定义集合T={f(A)|A S,A≠ },则集合T中的元素个数为
A.11 B.12
C.13 D.14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

当集合A含一个元素时,可取{2},{3},{4},{5},此时f(A)可取2,3,4,5;
当集合A含两个元素时,可取{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},此时f(A)可取5,6,7,8,9;
当集合A含三个元素时,可取{2,3,4},{2,3,5},{2,4,5},{3,4,5},此时f(A)可取9,10,11,12,
当集合A含四个元素时,可取{2,3,4,5},此时f(A)可取14,
综上可知f(A)可取2,3,4,5,6,7,8,9,10,11,12,14,共12个值,所以T中的元素个数为12.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16§1.1 集 合
考试要求 1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.
知识梳理
1.集合与元素
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于,用符号∈或 表示.
(3)集合的表示法:列举法、描述法、图示法.
(4)常见数集的记法
集合 非负整数集(或自然数集) 正整数集 整数集 有理数集 实数集
符号 N N*(或N+) Z Q R
2.集合的基本关系
(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A B(或B A).
(2)真子集:如果集合A B,但存在元素x∈B,且x A,就称集合A是集合B的真子集,记作A?B(或B?A).
(3)相等:若A B,且B A,则A=B.
(4)空集:不含任何元素的集合叫做空集,记为 .空集是任何集合的子集,是任何非空集合的真子集.
3.集合的基本运算
表示 运算 集合语言 图形语言 记法
并集 {x|x∈A,或x∈B} A∪B
交集 {x|x∈A,且x∈B} A∩B
补集 {x|x∈U,且x A} UA
常用结论
1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.
2.A∩B=A A B,A∪B=A B A.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)集合{x∈N|x3=x},用列举法表示为{-1,0,1}.( × )
(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( × )
(3)若1∈{x2,x},则x=-1或x=1.( × )
(4)对任意集合A,B,都有(A∩B) (A∪B).( √ )
教材改编题
1.(2022·新高考全国Ⅱ)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B等于(  )
A.{-1,2} B.{1,2}
C.{1,4} D.{-1,4}
答案 B
解析 由|x-1|≤1,得-1≤x-1≤1,解得0≤x≤2,所以B={x|0≤x≤2},所以A∩B={1,2},故选B.
2.下列集合与集合A={2 022,1}相等的是(  )
A.(1,2 022)
B.{(x,y)|x=2 022,y=1}
C.{x|x2-2 023x+2 022=0}
D.{(2 022,1)}
答案 C
解析 (1,2 022)表示一个点,不是集合,A不符合题意;
集合{(x,y)|x=2 022,y=1}的元素是点,与集合A不相等,B不符合题意;
{x|x2-2 023x+2 022=0}={2 022,1}=A,故C符合题意;
集合{(2 022,1)}的元素是点,与集合A不相等,D不符合题意.
3.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2},则A∪B=________, U(A∩B)=________.
答案 {x|x≥-1} {x|x<2或x≥3}
解析 因为A={x|-1≤x<3},B={x|2x-4≥x-2}={x|x≥2},
所以A∪B={x|x≥-1},A∩B={x|2≤x<3},
U(A∩B)={x|x<2或x≥3}.
题型一 集合的含义与表示
例1 (1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则集合A∩B的元素个数为(  )
A.0 B.1 C.2 D.3
答案 C
解析 如图,函数y=x与y=x2的图象有两个交点,
故集合A∩B有两个元素.
(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为(  )
A.1 B.1或0
C.0 D.-1或0
答案 C
解析 ∵-1∈A,
若a-2=-1,即a=1时,A={1,-1,-1},不符合集合元素的互异性;
若a2-a-1=-1,即a=1(舍去)或a=0时,
A={1,-2,-1},
故a=0.
思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.
跟踪训练1 (1)(多选)若集合M={x|x-2<0,x∈N},则下列四个命题中,错误的命题是(  )
A.0 M B.{0}∈M
C.{1} M D.1 M
答案 ABD
解析 对于A,因为M={x|x-2<0,x∈N},所以0∈M,所以A错误;
对于B,因为{0}是集合,且0∈M,所以{0} M,所以B错误;
对于C,因为1∈M,所以{1} M,所以C正确;
对于D,因为1是元素,1∈M,所以D错误.
(2)(2023·聊城模拟)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为(  )
A.2 B.3 C.4 D.5
答案 C
解析 因为A={0,1,2},a∈A,b∈A,
所以ab=0或ab=1或ab=2或ab=4,
故B={ab|a∈A,b∈A}={0,1,2,4},
即集合B中含有4个元素.
题型二 集合间的基本关系
例2 (1)(2022·宜春质检)已知集合A={x|y=ln(x-2)},B={x|x≥-3},则下列结论正确的是(  )
A.A=B B.A∩B=
C.A?B D.B A
答案 C
解析 由题设,可得A={x|x>2},
又B={x|x≥-3},
所以A是B的真子集,
故A,B,D错误,C正确.
(2)设集合A={x|-1≤x+1≤2},B={x|m-1≤x≤2m+1},当x∈Z时,集合A的真子集有________个;当B A时,实数m的取值范围是________.
答案 15 (-∞,-2)∪[-1,0]
解析 A={x|-2≤x≤1},
若x∈Z,则A={-2,-1,0,1},
故集合A的真子集有24-1=15(个).
由B A,
得①若B= ,则2m+1②若B≠ ,则
解得-1≤m≤0,
综上,实数m的取值范围是(-∞,-2)∪[-1,0].
思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.
(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.
跟踪训练2 (1)设集合M={x|x>4},N={x|x2>4},则(  )
A.M N B.N M
C.M RN D.N RM
答案 A
解析 N={x|x2>4}={x|x>2或x<-2},
RN={x|-2≤x≤2}, RM={x|x≤4},
∴M N.
(2)函数f(x)=的定义域为A,集合B={x|-a≤x≤4-a},若B A,则实数a的取值范围是________________.
答案 (-∞,-3]∪[5,+∞)
解析 由x2-2x-3≥0,得x≥3或x≤-1,
即A={x|x≥3或x≤-1}.
∵B A,
显然B≠ ,
∴4-a≤-1或-a≥3,
解得a≥5或a≤-3,
故实数a的取值范围是(-∞,-3]∪[5,+∞).
题型三 集合的基本运算
命题点1 集合的运算
例3 (1)(2022·新高考全国Ⅰ)若集合M={x|<4},N={x|3x≥1},则M∩N等于(  )
A.{x|0≤x<2} B.
C.{x|3≤x<16} D.
答案 D
解析 因为M={x|<4},所以M={x|0≤x<16};
因为N={x|3x≥1},所以N=.
所以M∩N=,故选D.
(2)如图所示,已知全集U=R,集合A={1,3,5,7},B={4,5,6,7,8},则图中阴影部分表示的集合为(  )
A.{1,3} B.{5,7}
C.{1,3,5} D.{1,3,7}
答案 A
解析 Venn图表示的集合为A∩( UB),
所以A∩( UB)={1,3}.
命题点2 利用集合的运算求参数的值(范围)
例4 已知集合A={x|2m},且( RA)∪B=R,则实数m的取值范围是(  )
A.m≥2 B.m<2
C.m≤2 D.m>2
答案 C
解析 ∵A={x|2∴ RA=(-∞,2]∪[3,+∞),
∵( RA)∪B=R,∴m≤2.
思维升华 对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.
跟踪训练3 (1)(2022·吕梁模拟)已知集合A={x|x2-5x-6<0},B={-2,1,4,8},则A∩B等于(  )
A.{-2,1} B.{1,8}
C.{1,4} D.{4,8}
答案 C
解析 因为A={x|x2-5x-6<0}={x|-1所以A∩B={1,4}.
(2)(2023·驻马店模拟)已知集合A={x|(x-1)(x-4)<0},B={x|x>a},若A∪B={x|x>1},则a的取值范围是(  )
A.[1,4) B.(1,4)
C.[4,+∞) D.(4,+∞)
答案 A
解析 由题意可得A={x|1因为A∪B={x|x>1},
所以1≤a<4.
课时精练
1.(2022·全国乙卷)设全集U={1,2,3,4,5},集合M满足 UM={1,3},则(  )
A.2∈M B.3∈M
C.4 M D.5 M
答案 A
解析 由题意知M={2,4,5},故选A.
2. (2022·焦作模拟)设集合A={0,1,2},B={x∈Z|-2A.{0,1} B.{-1,0}
C.{-1,0,1,2} D.{0,1,2}
答案 C
解析 因为B={-1,0,1},A={0,1,2},
所以A∪B={-1,0,1,2}.
3.(2022·娄底质检)集合M={(x,y)|2x-y=0},N={(x,y)|x+y-3=0},则M∩N等于(  )
A.{(2,-1)} B.{2,-1}
C.{(1,2)} D.{1,2}
答案 C
解析 联立
解得则M∩N={(1,2)}.
4. (2023·连云港质检)设全集U=R,集合A={x|1A.(1,2) B.(1,2]
C.(2,4) D.[2,4)
答案 D
解析 由已知可得 UB={x|x≤0或x≥2},
因此,A∩( UB)={x|2≤x<4}=[2,4).
5.(2022·海南模拟)已知集合A={x|x2≤1},集合B={x|x∈Z且x+1∈A},则B等于(  )
A.{-1,0,1} B.{-2,-1,0}
C.{-2,-1,0,1} D.{-2,-1,0,1,2}
答案 B
解析 因为集合A={x|x2≤1},
所以A={x|-1≤x≤1},
在集合B中,由x+1∈A,得-1≤x+1≤1,即-2≤x≤0,又x∈Z,所以x=-2,-1,0,即B={-2,-1,0}.
6.(2022·怀仁模拟)已知集合A={x|1m},若A∩( RB)= ,则实数m的取值范围为(  )
A.(-∞,1] B.(-∞,1)
C.[1,+∞) D.(1,+∞)
答案 A
解析 由题知A∩( RB)= ,得A B,则m≤1.
7.(多选)已知集合A={1,3,m2},B={1,m}.若A∪B=A,则实数m的值为(  )
A.0 B.1 C.2 D.3
答案 AD
解析 因为A∪B=A,所以B A.
因为A={1,3,m2},B={1,m},
所以m2=m或m=3,解得m=0或m=1或m=3.
当m=0时,A={1,3,0},B={1,0},符合题意;
当m=1时,集合A、集合B均不满足集合元素的互异性,不符合题意;
当m=3时,A={1,3,9},B={1,3},符合题意.
综上,m=0或3.
8.(多选)已知全集U的两个非空真子集A,B满足( UA)∪B=B,则下列关系一定正确的是(  )
A.A∩B= B.A∩B=B
C.A∪B=U D.( UB)∪A=A
答案 CD
解析 令U={1,2,3,4},A={2,3,4},B={1,2},满足( UA)∪B=B,但A∩B≠ ,A∩B≠B,故A,B均不正确;
由( UA)∪B=B,知 UA B,
∴U=A∪( UA) (A∪B),∴A∪B=U,
由 UA B,知 UB A,
∴( UB)∪A=A,故C,D均正确.
9.(2023·金华模拟)已知集合U={1,2,3,4,5,6},S={1,3,5},T={2,3,6},则S∩( UT)=________,集合S共有________个子集.
答案 {1,5} 8
解析 由题意可得 UT={1,4,5},
则S∩( UT)={1,5}.
集合S的子集有23个,即8个.
10.(2023·石家庄模拟)已知全集U=R,集合M={x∈Z||x-1|<3},N={-4,-2,0,1,5},则Venn图中阴影部分的集合为________.
答案 {-1,2,3}
解析 集合M={x∈Z||x-1|<3}={x∈Z|-3则Venn图中阴影部分表示的集合是M∩( RN)={-1,2,3}.
11.已知集合A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,则m的值可能是________.
答案 0,-,
解析 由x2+x-6=0,得x=2或x=-3,
所以A={x|x2+x-6=0}={-3,2},
因为A∪B=A,所以B A,
当B= 时,B A成立,此时方程mx+1=0无解,得m=0;
当B≠ 时,得m≠0,则集合B={x|mx+1=0}=,
因为B A,所以-=-3或-=2,
解得m=或m=-,
综上,m=0,m=或m=-.
12.已知集合A={x|(x+3)(x-3)≤0},B={x|2m-3≤x≤m+1}.当m=-1时,则A∪B=________;若A∩B=B,则m的取值范围为________.
答案 [-5,3] [0,2]∪(4,+∞)
解析 A={x|-3≤x≤3},
当m=-1时,B={x|-5≤x≤0},
此时A∪B=[-5,3].
由A∩B=B可知B A.
若B= ,则2m-3>m+1解得m>4;
若B≠ ,则解得0≤m≤2,
综上所述,实数m的取值范围为[0,2]∪(4,+∞).
13.(多选)已知全集U={x∈N|log2x<3},A={1,2,3}, U(A∩B)={1,2,4,5,6,7},则集合B可能为(  )
A.{2,3,4} B.{3,4,5}
C.{4,5,6} D.{3,5,6}
答案 BD
解析 由log2x<3得0因为 U(A∩B)={1,2,4,5,6,7},则有A∩B={3},3∈B,C不正确;
若B={2,3,4},则A∩B={2,3}, U(A∩B)={1,4,5,6,7},矛盾,A不正确;
若B={3,4,5},则A∩B={3}, U(A∩B)={1,2,4,5,6,7},B正确;
若B={3,5,6},则A∩B={3}, U(A∩B)={1,2,4,5,6,7},D正确.
14.某小区连续三天举办公益活动,第一天有190人参加,第二天有130人参加,第三天有180人参加,其中,前两天都参加的有30人,后两天都参加的有40人.第一天参加但第二天没参加活动的有________人,这三天参加活动的最少有________人.
答案 160 290
解析 根据题意画出Venn图,如图所示,
a表示只参加第一天的人,
b表示只参加第二天的人,
c表示只参加第三天的人,
d表示只参加第一天与第二天的人,
e表示只参加第一天与第三天的人,
f表示只参加第二天与第三天的人,
g表示三天都参加的人,
∴要使总人数最少,则令g最大,其次d,e,f也尽量大,d+g=30,f+g=40,
∴a+e=160,即第一天参加但第二天没参加的有160人,
∴gmax=30,d=0,f=10,a+d+g+e=190,
∴c+e=140,
∴emax=140,∴c=0,a=20,
则这三天参加活动的最少有a+b+c+…+g=20+90+0+0+140+10+30=290(人).
15.设全集为U,有以下四个关系式:
甲:A∩B=A;乙:A∪B=B;丙: UA UB;丁:( UA)∪( UB)= UA.
如果有且只有一个关系式不成立,则该式是(  )
A.甲 B.乙 C.丙 D.丁
答案 C
解析 由题意,甲:A∩B=A A B,
乙:A∪B=B A B,
丙: UA UB B A,
丁:( UA)∪( UB)= UA UB UA A B,
由于甲、乙、丁是等价的,故如果有且只有一个关系式不成立,则该式是丙.
16.对于非空数集M,定义f(M)表示该集合中所有元素的和.给定集合S={2,3,4,5},定义集合T={f(A)|A S,A≠ },则集合T中的元素个数为(  )
A.11 B.12 C.13 D.14
答案 B
解析 当集合A含一个元素时,可取{2},{3},{4},{5},此时f(A)可取2,3,4,5;
当集合A含两个元素时,可取{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},此时f(A)可取5,6,7,8,9;
当集合A含三个元素时,可取{2,3,4},{2,3,5},{2,4,5},{3,4,5},此时f(A)可取9,10,11,12,
当集合A含四个元素时,可取{2,3,4,5},此时f(A)可取14,
综上可知f(A)可取2,3,4,5,6,7,8,9,10,11,12,14,共12个值,所以T中的元素个数为12.§1.1 集 合
考试要求 1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.
知识梳理
1.集合与元素
(1)集合中元素的三个特性:____________、____________、____________.
(2)元素与集合的关系是________或________,用符号______或________表示.
(3)集合的表示法:__________、____________、____________.
(4)常见数集的记法
集合 非负整数集(或自然数集) 正整数集 整数集 有理数集 实数集
符号 N*(或N+)
2.集合的基本关系
(1)子集:一般地,对于两个集合A,B,如果集合A中____________都是集合B中的元素,就称集合A为集合B的子集,记作________(或B A).
(2)真子集:如果集合A B,但存在元素x∈B,且________,就称集合A是集合B的真子集,记作________(或B?A).
(3)相等:若A B,且________,则A=B.
(4)空集:不含任何元素的集合叫做空集,记为 .空集是________________的子集,是________________________的真子集.
3.集合的基本运算
表示 运算   集合语言 图形语言 记法
并集
交集
补集
常用结论
1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.
2.A∩B=A A B,A∪B=A B A.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)集合{x∈N|x3=x},用列举法表示为{-1,0,1}.(  )
(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(  )
(3)若1∈{x2,x},则x=-1或x=1.(  )
(4)对任意集合A,B,都有(A∩B) (A∪B).(  )
教材改编题
1.(2022·新高考全国Ⅱ)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B等于(  )
A.{-1,2} B.{1,2} C.{1,4} D.{-1,4}
2.下列集合与集合A={2 022,1}相等的是(  )
A.(1,2 022)
B.{(x,y)|x=2 022,y=1}
C.{x|x2-2 023x+2 022=0}
D.{(2 022,1)}
3.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2},则A∪B=________, U(A∩B)=________.
题型一 集合的含义与表示
例1 (1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则集合A∩B的元素个数为(  )
A.0 B.1 C.2 D.3
(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为(  )
A.1 B.1或0
C.0 D.-1或0
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.
跟踪训练1 (1)(多选)若集合M={x|x-2<0,x∈N},则下列四个命题中,错误的命题是(  )
A.0 M B.{0}∈M
C.{1} M D.1 M
(2)(2023·聊城模拟)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为(  )
A.2 B.3 C.4 D.5
题型二 集合间的基本关系
例2 (1)(2022·宜春质检)已知集合A={x|y=ln(x-2)},B={x|x≥-3},则下列结论正确的是(  )
A.A=B B.A∩B=
C.A?B D.B A
(2)设集合A={x|-1≤x+1≤2},B={x|m-1≤x≤2m+1},当x∈Z时,集合A的真子集有________个;当B A时,实数m的取值范围是________.
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.
(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.
跟踪训练2 (1)设集合M={x|x>4},N={x|x2>4},则(  )
A.M N B.N M
C.M RN D.N RM
(2)函数f(x)=的定义域为A,集合B={x|-a≤x≤4-a},若B A,则实数a的取值范围是________________.
题型三 集合的基本运算
命题点1 集合的运算
例3 (1)(2022·新高考全国Ⅰ)若集合M={x|<4},N={x|3x≥1},则M∩N等于(  )
A.{x|0≤x<2}
B.
C.{x|3≤x<16}
D.
(2)如图所示,已知全集U=R,集合A={1,3,5,7},B={4,5,6,7,8},则图中阴影部分表示的集合为(  )
A.{1,3} B.{5,7}
C.{1,3,5} D.{1,3,7}
听课记录:______________________________________________________________
________________________________________________________________________
命题点2 利用集合的运算求参数的值(范围)
例4 已知集合A={x|2m},且( RA)∪B=R,则实数m的取值范围是(  )
A.m≥2 B.m<2
C.m≤2 D.m>2
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.
跟踪训练3 (1)(2022·吕梁模拟)已知集合A={x|x2-5x-6<0},B={-2,1,4,8},则A∩B等于(  )
A.{-2,1} B.{1,8}
C.{1,4} D.{4,8}
(2)(2023·驻马店模拟)已知集合A={x|(x-1)·(x-4)<0},B={x|x>a},若A∪B={x|x>1},则a的取值范围是(  )
A.[1,4) B.(1,4)
C.[4,+∞) D.(4,+∞)

展开更多......

收起↑

资源列表