资源简介 (共85张PPT)§9.3 一元线性回归模型及其应用第九章 统计与成对数据的统计分析1.了解样本相关系数的统计含义.2.了解最小二乘法原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.考试要求内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练落实主干知识第一部分1.变量的相关关系(1)相关关系:两个变量 ,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.(2)相关关系的分类: 和 .(3)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在 附近,我们就称这两个变量线性相关.有关系正相关负相关一条直线2.样本相关系数(2)当r>0时,称成对样本数据 ;当r<0时,称成对样本数据 .(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越 ;当|r|越接近0时,成对样本数据的线性相关程度越 .正相关负相关强弱3.一元线性回归模型(2)残差:观测值减去 称为残差.预测值3.回归分析和独立性检验都是基于成对样本观测数据进行估计或推断,得出的结论都可能犯错误.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相关关系是一种非确定性关系.( )(2)散点图是判断两个变量相关关系的一种重要方法和手段.( )(3)经验回归直线 至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点.( )(4)样本相关系数的绝对值越接近1,成对样本数据的线性相关程度越强.( )√√√×根据回归分析的思想,可知对两个变量x,y进行回归分析时,应先收集数据(xi,yi),然后绘制散点图,再求经验回归方程,最后对所求的经验回归方程作出解释.1.在对两个变量x,y进行回归分析时有下列步骤:①对所求出的经验回归方程作出解释;②收集数据(xi,yi),i=1,2,…,n;③求经验回归方程;④根据所收集的数据绘制散点图.则下列操作顺序正确的是A.①②④③ B.③②④① C.②③①④ D.②④③①√2.对于x,y两变量,有四组成对样本数据,分别算出它们的样本相关系数r如下,则线性相关性最强的是A.-0.82 B.0.78 C.-0.69 D.0.87√由样本相关系数的绝对值|r|越大,变量间的线性相关性越强知,各选项中r=0.87的绝对值最大.气温(℃) 18 13 10 -1用电量(度) 24 34 38 643.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:A.68度 B.52度 C.12度 D.28度√探究核心题型第二部分x 3 4 5 6 7y 3.5 2.4 1.1 -0.2 -1.3例1 (1)(2023·保定模拟)已知两个变量x和y之间有线性相关关系,经调查得到如下样本数据:√题型一成对数据的相关性由已知数据可知y随着x的增大而减小,则变量x和y之间存在负相关关系,(2)对两个变量x,y进行线性相关分析,得到样本相关系数r1=0.899 5,对两个变量u,v进行线性相关分析,得到样本相关系数r2=-0.956 8,则下列判断正确的是A.变量x与y正相关,变量u与v负相关,变量x与y的线性相关性较强B.变量x与y负相关,变量u与v正相关,变量x与y的线性相关性较强C.变量x与y正相关,变量u与v负相关,变量u与v的线性相关性较强D.变量x与y负相关,变量u与v正相关,变量u与v的线性相关性较强√依题意,得r1=0.899 5,r2=-0.956 8,所以x,y正相关,u,v负相关,|r1|<|r2|<1,所以u,v的线性相关性较强.判定两个变量相关性的方法(1)画散点图:若点的分布从左下角到右上角,则两个变量正相关;若点的分布从左上角到右下角,则两个变量负相关.(2)样本相关系数:当r>0时,正相关;当r<0时,负相关;|r|越接近1,相关性越强.思维升华根据统计资料,则利润中位数A.是16,x与y有正相关关系 B.是17,x与y有正相关关系C.是17,x与y有负相关关系 D.是18,x与y有负相关关系年份 2017 2018 2019 2020 2021 2022利润x 12.2 14.6 16 18 20.4 22.3支出y 0.62 0.74 0.81 0.89 1 1.11跟踪训练1 (1)某公司2017~2022年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:√由题意知,利润中位数是 =17,而且随着年利润x的增加,广告支出y也在增加,故x与y有正相关关系.(2)已知相关变量x和y的散点图如图所示,若用y=b1·ln(k1x)与y=k2x+b2拟合时的样本相关系数分别为r1,r2则比较r1,r2的大小结果为A.r1>r2 B.r1=r2C.r1√由散点图可知,用y=b1ln(k1x)拟合比用y=k2x+b2拟合的程度高,故|r1|>|r2|;又因为x,y负相关,所以-r1>-r2,即r1命题点1 一元线性回归模型例2 (2023·蚌埠模拟)某商业银行对存款利率与日存款总量的关系进行调研,发现存款利率每上升一定的百分点,日均存款总额就会发生一定的变化,经过统计得到下表:题型二回归模型利率上升百分点x 0.1 0.2 0.3 0.4 0.5日均存款总额y(亿元) 0.2 0.35 0.5 0.65 0.8(1)在给出的坐标系中画出上表数据的散点图;如图所示.利率上升百分点x 0.1 0.2 0.3 0.4 0.5日均存款总额y(亿元) 0.2 0.35 0.5 0.65 0.8利率上升百分点x 0.1 0.2 0.3 0.4 0.5日均存款总额y(亿元) 0.2 0.35 0.5 0.65 0.8(3)已知现行利率下的日均存款总额为0.625亿元,试根据(2)中的经验回归方程,预测日均存款总额为现行利率下的2倍时,利率需上升多少个百分点?设利率需上升x个百分点,由(2)得,0.625×2=1.5x+0.05,解得x=0.8,所以预测利率需上升0.8个百分点.命题点2 非线性回归模型例3 (2023·保山模拟)某县为了解乡村经济发展情况,对全县乡村经济发展情况进行调研,现对2013年以来的乡村经济收入y(单位:亿元)进行了统计分析,制成如图所示的散点图,其中年份代码x的值1—10分别对应2013年至2022年.(1)若用模型①y=a+bx,②y=a+拟合y与x的关系,其样本相关系数分别为r1=0.851 9,r2=0.990 1,试判断哪个模型的相关程度更强?(2)根据(1)中相关程度更强的模型,求y关于x的经验回归方程(系数精确到0.01),并估计该县2026年的乡村经济收入(精确到0.01).2026年的年份代码为14,所以估计该县2026年的乡村经济收入为88.88亿元.求经验回归方程的步骤思维升华跟踪训练2 (2022·南充模拟)某特色餐馆开通了某APP的外卖服务,在一周内的某特色菜外卖份数x(单位:份)与收入y(单位:元)之间有如下的对应数据:外卖份数x(份) 2 4 5 6 8收入y(元) 30 40 60 50 70(1)在给出的坐标系中画出数据散点图;作出散点图如图所示.(2)请根据以上数据用最小二乘法求出收入y关于份数x的经验回归方程;外卖份数x(份) 2 4 5 6 8收入y(元) 30 40 60 50 70外卖份数x(份) 2 4 5 6 8收入y(元) 30 40 60 50 70(3)据此估计外卖份数为12时,收入为多少元.即外卖份数为12时,预测收入为95.5元.外卖份数x(份) 2 4 5 6 8收入y(元) 30 40 60 50 70例4 (1)(多选)下列说法正确的是A.在经验回归方程 =-0.85x+2.3中,当解释变量x每增加1个单位时,响应变量 平均减少2.3个单位B.在经验回归方程 =-0.85x+2.3中,相对于样本点(1,1.2)的残差为-0.25C.在残差图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好D.若两个变量的决定系数R2越大,表示残差平方和越小,即模型的拟合效果越好题型三残差分析√√√对于C,在残差图中,残差分布的水平带状区域的宽度越窄,说明拟合精度越高,即拟合效果越好,故C正确;对于D,由决定系数R2的意义可知,R2越大,表示残差平方和越小,即模型的拟合效果越好,故D正确.(2)新能源汽车的核心部件是动力电池,电池占了新能源整车成本的很大一部分,而其中的原材料碳酸锂又是电池的主要成分.从2020年底开始,碳酸锂的价格不断升高,如表是2022年某企业的前5个月碳酸锂的价格与月份的统计数据:月份代码x 1 2 3 4 5碳酸锂价格y(万元/kg) 0.5 0.6 1 m 1.51.4可得m=1.4.检验回归模型的拟合效果的两种方法(1)残差分析:通过残差分析发现原始数据中的可疑数据,判断所建立模型的拟合效果.(2)R2分析:通过公式计算R2,R2越大,残差平方和越小,模型的拟合效果越好;R2越小,残差平方和越大,模型的拟合效果越差.思维升华B.可以用样本相关系数r来刻画两个变量x和y线性相关程度的强弱,r的值越小,说明两个变量线性相关程度越弱C.在回归分析中,决定系数R2=0.80的模型比决定系数R2=0.98的模型拟合的效果要好D.残差平方和越小的模型,拟合的效果越好跟踪训练3 (1)下列命题是真命题的为√对于B,由样本相关系数的意义,当|r|越接近0时,表示变量y与x之间的线性相关程度越弱,所以B是假命题;对于C,用决定系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,所以C是假命题;对于D,由残差的统计学意义知,D是真命题.此方程在样本点(160,46)处的残差为46-44.5=1.5.(2)女高中生的体重y(kg)关于身高x(cm)的经验回归方程是 =0.75x-75.5,则此方程在样本点(160,46)处的残差是________.1.5课时精练第三部分1.下列有关线性回归的说法,不正确的是A.具有相关关系的两个变量不是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有经验回归方程1234567891011121314√基础保分练1234567891011121314根据两个变量具有相关关系的概念,可知A正确;散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B,C正确;具有相关关系的成对样本数据才有经验回归方程,所以D不正确.样本相关系数的绝对值越接近1,成对样本数据的线性相关程度越强,故D错误.2.对于样本相关系数,下列说法错误的是A.样本相关系数可以用来判断成对样本数据相关的正负性B.样本相关系数可以是正的,也可以是负的C.样本相关系数r∈[-1,1]D.样本相关系数越大,成对样本数据的线性相关程度也越强√1234567891011121314因为样本数据对应的点均在一条直线上,所以R2=1.3.(2023·运城模拟)在线性回归模型中,变量x与y的一组样本数据对应的√1234567891011121314A.变量x与y正相关B.y与x的样本相关系数r<0D.当产量为8吨时,预测所需材料约为5.95吨4.(多选)某工厂研究某种产品的产量x(单位:吨)与所需某种材料y(单位:吨)之间的相关关系,在生产过程中收集4组数据如表所示.根据表中数据√√√1234567891011121314x 3 4 6 7y 2.5 3 4 5.91234567891011121314所以变量x与y呈正相关,所以样本相关系数r>0,故A正确,B错误;1234567891011121314即产量为8吨时,预测所需材料约为5.95吨,故D正确.5.(多选)(2023·唐山模拟)某制衣品牌为使成衣尺寸更精准,选择了10名志愿者,对其身高(单位:cm)和臂展(单位:cm)进行了测量,这10名志愿者身高和臂展的折线图如图所示.已知这10名志愿者身高的平均值为176 cm,根据这10名志愿者的数据求得臂展u关于身高v的经验回归方程为 =1.2v-34,则下列结论正确的是A.这10名志愿者身高的极差小于臂展的极差B.这10名志愿者的身高和臂展呈负相关C.这10名志愿者臂展的平均值为176.2 cmD.根据经验回归方程可估计身高为160 cm的人的臂展为158 cm1234567891011121314√√对于选项A,因为这10名志愿者臂展的最大值大于身高的最大值,而臂展的最小值小于身高的最小值,所以这10名志愿者身高的极差小于臂展的极差,故A正确;对于选项B,因为1.2>0,所以这10名志愿者的身高和臂展呈正相关关系,故B错误;对于选项C,因为这10名志愿者身高的平均值为176 cm,所以这10名志愿者臂展的平均值为1.2×176-34=177.2(cm),故C错误;12345678910111213141234567891011121314A.-0.96 B.-0.8 C.0.8 D.0.966.色差和色度是衡量毛绒玩具质量优劣的重要指标,现抽检一批产品测得数据列于表中:已知该产品的色度y和色差x之间满足线性相关关系,且 现有一对测量数据为(30,23.6),则该数据的残差为√色差x 21 23 25 27色度y 15 18 19 2012345678910111213141234567891011121314所以该数据的残差为23.6-22.8=0.8.7.某智能机器人的广告费用x(万元)与销售额y(万元)的统计数据如表所示:根据此表可得经验回归方程为 据此模型预测广告费用为8万元时销售额为_____万元.123456789101112131457广告费用x(万元) 2 3 5 6销售额y(万元) 28 31 41 481234567891011121314所以预测当广告费用为8万元时,销售额为5×8+17=57(万元).广告费用x(万元) 2 3 5 6销售额y(万元) 28 31 41 48由已知条件可知,当x=5时,观测值为60,所以残差等于60-50=10.8.已知变量x和变量y的一组随机观测数据为(2,30),(4,40),(5,60),(6,50),(8,70).如果y关于x的经验回归方程是 =6.5x+17.5,那么当x=5时,残差等于_______.1234567891011121314109.假设关于某种设备的使用年限x(单位:年)与所支出的维修费用y(单位:万元)有如下统计资料:x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.012345678910111213141234567891011121314(2)计算y与x的样本相关系数r(精确到0.001),并判断该设备的使用年限与所支出的维修费用的相关程度.x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0123456789101112131412345678910111213141234567891011121314r接近1,说明该设备的使用年限与所支出的维修费用之间具有很高的相关性.10.(2022·全国乙卷)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:1234567891011121314样本号i 1 2 3 4 5 6 7 8 9 10 总和根部横截面积xi 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6材积量yi 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;1234567891011121314样本号i 1 2 3 4 5 6 7 8 9 10 总和根部横截面积xi 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6材积量yi 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9样本中10棵这种树木的材积量的平均值据此可估计该林区这种树木平均一棵的根部横截面积为0.06 m2,平均一棵的材积量为0.39 m3.1234567891011121314(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);12345678910111213141234567891011121314(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186 m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.1234567891011121314设该林区这种树木的总材积量的估计值为Y m3,又已知树木的材积量与其根部横截面积近似成正比,解得Y=1 209.则该林区这种树木的总材积量的估计值为1 209 m3.1234567891011121314C.此回归模型第4周的残差为5D.估计第6周治愈人数为220√11.(多选)针对某疾病,各地医疗机构采取了各种有针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示,由表格可得y关于x的经验回归方程为 则下列说法正确的是周数(x) 1 2 3 4 5治愈人数(y) 2 17 36 93 1421234567891011121314综合提升练√1234567891011121314123456789101112131412.2020年,全球开展了某疫苗研发竞赛,我国处于领先地位,为了研究疫苗的有效率,在某地进行临床试验,对符合一定条件的10 000名试验者注射了该疫苗,一周后有20人感染,为了验证疫苗的有效率,同期,从相同条件下未注射疫苗的人群中抽取2 500人,分成5组,各组感染人数如下:1234567891011121314调查人数x 300 400 500 600 700感染人数y 3 3 6 6 71234567891011121314调查人数x 300 400 500 600 700感染人数y 3 3 6 6 70.818故N=0.011×10 000-0.5=110-0.5=109.5≈110,调查人数x 300 400 500 600 700感染人数y 3 3 6 6 7123456789101112131413.某化工厂产生的废气经过过滤后排放,以模型Y=p0e-kX去拟合过滤过程中废气的污染物浓度Y mg/L与时间X h之间的一组数据,为了求出经验回归方程,设z=ln Y,其变换后得到经验回归方程为 =-0.5X+2+ln 300,则当经过6 h后,预报废气的污染物浓度为A.300e2 mg/L B.300e mg/L√1234567891011121314拓展冲刺练14.(多选)已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为 ,去除两个歧义点(-2,1)和(2,-1)后,得到新的经验回归直线的斜率为3.则下列说法正确的是A.相关变量x,y具有正相关关系B.去除两个歧义点后,新样本中变量xj(j=1,2,…,8)的平均值变大C.去除两个歧义点后的经验回归方程为D.去除两个歧义点后,样本数据(4,8.9)的残差为0.11234567891011121314√√√对于A,因为经验回归直线的斜率大于0,所以相关变量x,y具有正相关关系,故A正确;12345678910111213141234567891011121314§9.3 一元线性回归模型及其应用考试要求 1.了解样本相关系数的统计含义.2.了解最小二乘法原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.知识梳理1.变量的相关关系(1)相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.(2)相关关系的分类:正相关和负相关.(3)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们就称这两个变量线性相关.2.样本相关系数(1)r=.(2)当r>0时,称成对样本数据正相关;当r<0时,称成对样本数据负相关.(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越强;当|r|越接近0时,成对样本数据的线性相关程度越弱.3.一元线性回归模型(1)我们将=x+称为Y关于x的经验回归方程,其中(2)残差:观测值减去预测值称为残差.常用结论1.经验回归直线过点(,).2.求时,常用公式=.3.回归分析和独立性检验都是基于成对样本观测数据进行估计或推断,得出的结论都可能犯错误.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)相关关系是一种非确定性关系.( √ )(2)散点图是判断两个变量相关关系的一种重要方法和手段.( √ )(3)经验回归直线=x+至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点.( × )(4)样本相关系数的绝对值越接近1,成对样本数据的线性相关程度越强.( √ )教材改编题1.在对两个变量x,y进行回归分析时有下列步骤:①对所求出的经验回归方程作出解释;②收集数据(xi,yi),i=1,2,…,n;③求经验回归方程;④根据所收集的数据绘制散点图.则下列操作顺序正确的是( )A.①②④③ B.③②④①C.②③①④ D.②④③①答案 D解析 根据回归分析的思想,可知对两个变量x,y进行回归分析时,应先收集数据(xi,yi),然后绘制散点图,再求经验回归方程,最后对所求的经验回归方程作出解释.2.对于x,y两变量,有四组成对样本数据,分别算出它们的样本相关系数r如下,则线性相关性最强的是( )A.-0.82 B.0.78 C.-0.69 D.0.87答案 D解析 由样本相关系数的绝对值|r|越大,变量间的线性相关性越强知,各选项中r=0.87的绝对值最大.3.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:气温(℃) 18 13 10 -1用电量(度) 24 34 38 64由表中数据得到经验回归方程=-2x+,当气温为-4 ℃时,预测用电量约为( )A.68度 B.52度C.12度 D.28度答案 A解析 由表格可知=10,=40,根据经验回归直线必过(,)得=40+20=60,∴经验回归方程为=-2x+60,因此当x=-4时,=68.题型一 成对数据的相关性例1 (1)(2023·保定模拟)已知两个变量x和y之间有线性相关关系,经调查得到如下样本数据:x 3 4 5 6 7y 3.5 2.4 1.1 -0.2 -1.3根据表格中的数据求得经验回归方程为=x+,则下列说法中正确的是( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0答案 B解析 由已知数据可知y随着x的增大而减小,则变量x和y之间存在负相关关系,所以<0.又=×(3+4+5+6+7)=5,=×(3.5+2.4+1.1-0.2-1.3)=1.1,即1.1=5+,所以=1.1-5>0.(2)对两个变量x,y进行线性相关分析,得到样本相关系数r1=0.899 5,对两个变量u,v进行线性相关分析,得到样本相关系数r2=-0.956 8,则下列判断正确的是( )A.变量x与y正相关,变量u与v负相关,变量x与y的线性相关性较强B.变量x与y负相关,变量u与v正相关,变量x与y的线性相关性较强C.变量x与y正相关,变量u与v负相关,变量u与v的线性相关性较强D.变量x与y负相关,变量u与v正相关,变量u与v的线性相关性较强答案 C解析 依题意,得r1=0.899 5,r2=-0.956 8,所以x,y正相关,u,v负相关,|r1|<|r2|<1,所以u,v的线性相关性较强.思维升华 判定两个变量相关性的方法(1)画散点图:若点的分布从左下角到右上角,则两个变量正相关;若点的分布从左上角到右下角,则两个变量负相关.(2)样本相关系数:当r>0时,正相关;当r<0时,负相关;|r|越接近1,相关性越强.(3)经验回归方程:当>0时,正相关;当<0时,负相关.跟踪训练1 (1)某公司2017~2022年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:年份 2017 2018 2019 2020 2021 2022利润x 12.2 14.6 16 18 20.4 22.3支出y 0.62 0.74 0.81 0.89 1 1.11根据统计资料,则利润中位数( )A.是16,x与y有正相关关系B.是17,x与y有正相关关系C.是17,x与y有负相关关系D.是18,x与y有负相关关系答案 B解析 由题意知,利润中位数是=17,而且随着年利润x的增加,广告支出y也在增加,故x与y有正相关关系.(2)已知相关变量x和y的散点图如图所示,若用y=b1·ln(k1x)与y=k2x+b2拟合时的样本相关系数分别为r1,r2则比较r1,r2的大小结果为( )A.r1>r2 B.r1=r2C.r1答案 C解析 由散点图可知,用y=b1ln(k1x)拟合比用y=k2x+b2拟合的程度高,故|r1|>|r2|;又因为x,y负相关,所以-r1>-r2,即r1题型二 回归模型命题点1 一元线性回归模型例2 (2023·蚌埠模拟)某商业银行对存款利率与日存款总量的关系进行调研,发现存款利率每上升一定的百分点,日均存款总额就会发生一定的变化,经过统计得到下表:利率上升百分点x 0.1 0.2 0.3 0.4 0.5日均存款总额y(亿元) 0.2 0.35 0.5 0.65 0.8(1)在给出的坐标系中画出上表数据的散点图;(2)根据上表提供的数据,用最小二乘法求出y关于x的经验回归方程=x+;(3)已知现行利率下的日均存款总额为0.625亿元,试根据(2)中的经验回归方程,预测日均存款总额为现行利率下的2倍时,利率需上升多少个百分点?参考公式及数据:①=,=-,②iyi=0.9,=0.55.解 (1)如图所示.(2)由表格数据可得=×(0.1+0.2+0.3+0.4+0.5)=0.3,=×(0.2+0.35+0.5+0.65+0.8)=0.5,所以===1.5,=-=0.5-1.5×0.3=0.05,故=1.5x+0.05.(3)设利率需上升x个百分点,由(2)得,0.625×2=1.5x+0.05,解得x=0.8,所以预测利率需上升0.8个百分点.命题点2 非线性回归模型例3 (2023·保山模拟)某县为了解乡村经济发展情况,对全县乡村经济发展情况进行调研,现对2013年以来的乡村经济收入y(单位:亿元)进行了统计分析,制成如图所示的散点图,其中年份代码x的值1—10分别对应2013年至2022年.(1)若用模型①y=a+bx,②y=a+b拟合y与x的关系,其样本相关系数分别为r1=0.851 9,r2=0.990 1,试判断哪个模型的相关程度更强?(2)根据(1)中相关程度更强的模型,求y关于x的经验回归方程(系数精确到0.01),并估计该县2026年的乡村经济收入(精确到0.01).参考数据:ti=,=i,≈3.606,≈3.742,≈3.873.(xi-)2 (ti-)2 (xi-)·(yi-) (ti-)·(yi-)72.65 2.25 126.25 4.52 235.48 49.16参考公式:对于一组数据(t1,y1),(t2,y2),…,(tn,yn),经验回归方程=t+中的斜率和截距的最小二乘估计公式分别为=,=-.解 (1)因为r2更接近1,所以y=a+b的相关程度更强.(2)根据题中所给数据得=+t,所以==≈10.88,则≈72.65-10.88×2.25=48.17,所以非线性经验回归方程为=48.17+10.88,2026年的年份代码为14,当x=14时,=48.17+10.88×≈88.88,所以估计该县2026年的乡村经济收入为88.88亿元.思维升华 求经验回归方程的步骤跟踪训练2 (2022·南充模拟)某特色餐馆开通了某APP的外卖服务,在一周内的某特色菜外卖份数x(单位:份)与收入y(单位:元)之间有如下的对应数据:外卖份数x(份) 2 4 5 6 8收入y(元) 30 40 60 50 70(1)在给出的坐标系中画出数据散点图;(2)请根据以上数据用最小二乘法求出收入y关于份数x的经验回归方程;(3)据此估计外卖份数为12时,收入为多少元.参考数据公式:=145,iyi=1 380,==,=-.解 (1)作出散点图如图所示.(2)由表格数据得,==5,==50,则===6.5,=-=50-6.5×5=17.5,因此,所求经验回归方程为=6.5x+17.5.(3)当x=12时,=12×6.5+17.5=95.5,即外卖份数为12时,预测收入为95.5元.题型三 残差分析例4 (1)(多选)下列说法正确的是( )A.在经验回归方程=-0.85x+2.3中,当解释变量x每增加1个单位时,响应变量平均减少2.3个单位B.在经验回归方程=-0.85x+2.3中,相对于样本点(1,1.2)的残差为-0.25C.在残差图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好D.若两个变量的决定系数R2越大,表示残差平方和越小,即模型的拟合效果越好答案 BCD解析 对于A,根据经验回归方程,当解释变量x每增加1个单位时,响应变量平均减少0.85个单位,故A错误;对于B,当解释变量x=1时,响应变量=1.45,则样本点(1,1.2)的残差为-0.25,故B正确;对于C,在残差图中,残差分布的水平带状区域的宽度越窄,说明拟合精度越高,即拟合效果越好,故C正确;对于D,由决定系数R2的意义可知,R2越大,表示残差平方和越小,即模型的拟合效果越好,故D正确.(2)新能源汽车的核心部件是动力电池,电池占了新能源整车成本的很大一部分,而其中的原材料碳酸锂又是电池的主要成分.从2020年底开始,碳酸锂的价格不断升高,如表是2022年某企业的前5个月碳酸锂的价格与月份的统计数据:月份代码x 1 2 3 4 5碳酸锂价格y(万元/kg) 0.5 0.6 1 m 1.5根据表中数据,得出y关于x的经验回归方程为=0.28x+,根据数据计算出在样本点(5,1.5)处的残差为-0.06,则表中m=________.答案 1.4解析 由题设,1.5-=1.5-(0.28×5+)=-0.06,可得=0.16.又==3,==,所以0.28×3+0.16=,可得m=1.4.思维升华 检验回归模型的拟合效果的两种方法(1)残差分析:通过残差分析发现原始数据中的可疑数据,判断所建立模型的拟合效果.(2)R2分析:通过公式计算R2,R2越大,残差平方和越小,模型的拟合效果越好;R2越小,残差平方和越大,模型的拟合效果越差.跟踪训练3 (1)下列命题是真命题的为( )A.经验回归方程=x+一定不过样本点B.可以用样本相关系数r来刻画两个变量x和y线性相关程度的强弱,r的值越小,说明两个变量线性相关程度越弱C.在回归分析中,决定系数R2=0.80的模型比决定系数R2=0.98的模型拟合的效果要好D.残差平方和越小的模型,拟合的效果越好答案 D解析 对于A,经验回归方程不一定经过其样本点,但一定经过(,),所以A是假命题;对于B,由样本相关系数的意义,当|r|越接近0时,表示变量y与x之间的线性相关程度越弱,所以B是假命题;对于C,用决定系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,所以C是假命题;对于D,由残差的统计学意义知,D是真命题.(2)女高中生的体重y(kg)关于身高x(cm)的经验回归方程是=0.75x-75.5,则此方程在样本点(160,46)处的残差是________.答案 1.5解析 由题意得=0.75x-75.5,当x=160时,=0.75×160-75.5=44.5,此方程在样本点(160,46)处的残差为46-44.5=1.5.课时精练1.下列有关线性回归的说法,不正确的是( )A.具有相关关系的两个变量不是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有经验回归方程答案 D解析 根据两个变量具有相关关系的概念,可知A正确;散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B,C正确;具有相关关系的成对样本数据才有经验回归方程,所以D不正确.2.对于样本相关系数,下列说法错误的是( )A.样本相关系数可以用来判断成对样本数据相关的正负性B.样本相关系数可以是正的,也可以是负的C.样本相关系数r∈[-1,1]D.样本相关系数越大,成对样本数据的线性相关程度也越强答案 D解析 样本相关系数的绝对值越接近1,成对样本数据的线性相关程度越强,故D错误.3.(2023·运城模拟)在线性回归模型中,变量x与y的一组样本数据对应的点均在直线y=x+1上,R2=1-,则R2等于( )A. B. C.1 D.答案 C解析 因为样本数据对应的点均在一条直线上,所以R2=1.4.(多选)某工厂研究某种产品的产量x(单位:吨)与所需某种材料y(单位:吨)之间的相关关系,在生产过程中收集4组数据如表所示.根据表中数据可得经验回归方程为=0.7x+,则下列四个说法中正确的为( )x 3 4 6 7y 2.5 3 4 5.9A.变量x与y正相关B.y与x的样本相关系数r<0C.=0.35D.当产量为8吨时,预测所需材料约为5.95吨答案 ACD解析 因为经验回归方程=0.7x+,所以变量x与y呈正相关,所以样本相关系数r>0,故A正确,B错误;由表格可得==5,==3.85,则0.7×5+=3.85,解得=0.35,故C正确;所以经验回归方程为=0.7x+0.35,当x=8时,=0.7×8+0.35=5.95,即产量为8吨时,预测所需材料约为5.95吨,故D正确.5.(多选)(2023·唐山模拟)某制衣品牌为使成衣尺寸更精准,选择了10名志愿者,对其身高(单位:cm)和臂展(单位:cm)进行了测量,这10名志愿者身高和臂展的折线图如图所示.已知这10名志愿者身高的平均值为176 cm,根据这10名志愿者的数据求得臂展u关于身高v的经验回归方程为=1.2v-34,则下列结论正确的是( )A.这10名志愿者身高的极差小于臂展的极差B.这10名志愿者的身高和臂展呈负相关C.这10名志愿者臂展的平均值为176.2 cmD.根据经验回归方程可估计身高为160 cm的人的臂展为158 cm答案 AD解析 对于选项A,因为这10名志愿者臂展的最大值大于身高的最大值,而臂展的最小值小于身高的最小值,所以这10名志愿者身高的极差小于臂展的极差,故A正确;对于选项B,因为1.2>0,所以这10名志愿者的身高和臂展呈正相关关系,故B错误;对于选项C,因为这10名志愿者身高的平均值为176 cm,所以这10名志愿者臂展的平均值为1.2×176-34=177.2(cm),故C错误;对于选项D,若一个人的身高为160 cm,则由经验回归方程=1.2v-34,可得这个人的臂展的估计值为158 cm,故D正确.6.色差和色度是衡量毛绒玩具质量优劣的重要指标,现抽检一批产品测得数据列于表中:已知该产品的色度y和色差x之间满足线性相关关系,且=0.8x+,现有一对测量数据为(30,23.6),则该数据的残差为( )色差x 21 23 25 27色度y 15 18 19 20A.-0.96 B.-0.8 C.0.8 D.0.96答案 C解析 由题意可知,==24,==18,将(24,18)代入=0.8x+,即18=0.8×24+,解得=-1.2,所以=0.8x-1.2,当x=30时,=0.8×30-1.2=22.8,所以该数据的残差为23.6-22.8=0.8.7.某智能机器人的广告费用x(万元)与销售额y(万元)的统计数据如表所示:广告费用x(万元) 2 3 5 6销售额y(万元) 28 31 41 48根据此表可得经验回归方程为=5x+,据此模型预测广告费用为8万元时销售额为________万元.答案 57解析 由表格,得==4,==37,所以37=5×4+,即=17,所以预测当广告费用为8万元时,销售额为5×8+17=57(万元).8.已知变量x和变量y的一组随机观测数据为(2,30),(4,40),(5,60),(6,50),(8,70).如果y关于x的经验回归方程是=6.5x+17.5,那么当x=5时,残差等于________.答案 10解析 由已知条件可知,当x=5时,观测值为60,将x=5代入经验回归方程=6.5x+17.5,可得=6.5×5+17.5=50,所以残差等于60-50=10.9.假设关于某种设备的使用年限x(单位:年)与所支出的维修费用y(单位:万元)有如下统计资料:x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0已知=90,≈140.8,iyi=112.3,≈8.9,≈1.4.(1)求,;(2)计算y与x的样本相关系数r(精确到0.001),并判断该设备的使用年限与所支出的维修费用的相关程度.附:样本相关系数r==.解 (1)==4,==5.0.(2)iyi-5=112.3-5×4×5=12.3,-52=90-5×42=10,-52≈140.8-5×52=15.8,所以r= ≈=≈≈0.987,r接近1,说明该设备的使用年限与所支出的维修费用之间具有很高的相关性.10.(2022·全国乙卷)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:样本号i 1 2 3 4 5 6 7 8 9 10 总和根部横截面积xi 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6材积量yi 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得x=0.038,y=1.615 8,xiyi=0.247 4.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186 m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:样本相关系数r==,≈1.377.解 (1)样本中10棵这种树木的根部横截面积的平均值==0.06(m2),样本中10棵这种树木的材积量的平均值==0.39(m3),据此可估计该林区这种树木平均一棵的根部横截面积为0.06 m2,平均一棵的材积量为0.39 m3.(2)r===≈≈0.97.(3)设该林区这种树木的总材积量的估计值为Y m3,又已知树木的材积量与其根部横截面积近似成正比,可得=,解得Y=1 209.则该林区这种树木的总材积量的估计值为1 209 m3.11.(多选)针对某疾病,各地医疗机构采取了各种有针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示,由表格可得y关于x的经验回归方程为=6x2+,则下列说法正确的是( )周数(x) 1 2 3 4 5治愈人数(y) 2 17 36 93 142A.=4B.=-8C.此回归模型第4周的残差为5D.估计第6周治愈人数为220答案 BC解析 设t=x2,则=6t+,由已知得=×(1+4+9+16+25)=11,=×(2+17+36+93+142)=58,所以=58-6×11=-8,故A错误,B正确;在=6x2-8中,令x=4,得4=6×42-8=88,所以此回归模型第4周的残差为y4-4=93-88=5,故C正确;在=6x2-8中,令x=6,得6=6×62-8=208,故D错误.12.2020年,全球开展了某疫苗研发竞赛,我国处于领先地位,为了研究疫苗的有效率,在某地进行临床试验,对符合一定条件的10 000名试验者注射了该疫苗,一周后有20人感染,为了验证疫苗的有效率,同期,从相同条件下未注射疫苗的人群中抽取2 500人,分成5组,各组感染人数如下:调查人数x 300 400 500 600 700感染人数y 3 3 6 6 7并求得y与x的经验回归方程为=0.011x+,同期,在人数为10 000的条件下,以拟合结果估算未注射疫苗的人群中感染人数,记为N;注射疫苗后仍被感染的人数记为n,则估计该疫苗的有效率为________.(疫苗的有效率为1-,结果保留3位有效数字)答案 0.818解析 由表格中的数据可得=500,=5,故=5-0.011×500=-0.5,故N=0.011×10 000-0.5=110-0.5=109.5≈110,而n=20,故疫苗的有效率为1-≈0.818.13.某化工厂产生的废气经过过滤后排放,以模型Y=p0e-kX去拟合过滤过程中废气的污染物浓度Y mg/L与时间X h之间的一组数据,为了求出经验回归方程,设z=ln Y,其变换后得到经验回归方程为=-0.5X+2+ln 300,则当经过6 h后,预报废气的污染物浓度为( )A.300e2 mg/L B.300e mg/LC. mg/L D. mg/L答案 D解析 当X=6时,=-1+ln 300=ln ,所以==.14.(多选)已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为=2x-0.4,且=2,去除两个歧义点(-2,1)和(2,-1)后,得到新的经验回归直线的斜率为3.则下列说法正确的是( )A.相关变量x,y具有正相关关系B.去除两个歧义点后,新样本中变量xj(j=1,2,…,8)的平均值变大C.去除两个歧义点后的经验回归方程为1=3x-3D.去除两个歧义点后,样本数据(4,8.9)的残差为0.1答案 ABC解析 对于A,因为经验回归直线的斜率大于0,所以相关变量x,y具有正相关关系,故A正确;对于B,将=2代入=2x-0.4得=3.6,则去除两个歧义点后,得到新的相关变量的平均值分别为==,==,故B正确;对于C,=-3×=-3,新的经验回归方程为1=3x-3,故C正确;对于D,当x=4时,1=3×4-3=9,残差为8.9-9=-0.1,故D错误.§9.3 一元线性回归模型及其应用考试要求 1.了解样本相关系数的统计含义.2.了解最小二乘法原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.知识梳理1.变量的相关关系(1)相关关系:两个变量____________,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.(2)相关关系的分类:________和__________.(3)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在________________附近,我们就称这两个变量线性相关.2.样本相关系数(1)r=.(2)当r>0时,称成对样本数据____________;当r<0时,称成对样本数据____________.(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越________;当|r|越接近0时,成对样本数据的线性相关程度越________.3.一元线性回归模型(1)我们将=x+称为Y关于x的经验回归方程,其中(2)残差:观测值减去____________称为残差.常用结论1.经验回归直线过点(,).2.求时,常用公式=.3.回归分析和独立性检验都是基于成对样本观测数据进行估计或推断,得出的结论都可能犯错误.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)相关关系是一种非确定性关系.( )(2)散点图是判断两个变量相关关系的一种重要方法和手段.( )(3)经验回归直线=x+至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点.( )(4)样本相关系数的绝对值越接近1,成对样本数据的线性相关程度越强.( )教材改编题1.在对两个变量x,y进行回归分析时有下列步骤:①对所求出的经验回归方程作出解释;②收集数据(xi,yi),i=1,2,…,n;③求经验回归方程;④根据所收集的数据绘制散点图.则下列操作顺序正确的是( )A.①②④③ B.③②④①C.②③①④ D.②④③①2.对于x,y两变量,有四组成对样本数据,分别算出它们的样本相关系数r如下,则线性相关性最强的是( )A.-0.82 B.0.78 C.-0.69 D.0.873.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:气温(℃) 18 13 10 -1用电量(度) 24 34 38 64由表中数据得到经验回归方程=-2x+,当气温为-4 ℃时,预测用电量约为( )A.68度 B.52度 C.12度 D.28度题型一 成对数据的相关性例1 (1)(2023·保定模拟)已知两个变量x和y之间有线性相关关系,经调查得到如下样本数据:x 3 4 5 6 7y 3.5 2.4 1.1 -0.2 -1.3根据表格中的数据求得经验回归方程为=x+,则下列说法中正确的是( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0(2)对两个变量x,y进行线性相关分析,得到样本相关系数r1=0.899 5,对两个变量u,v进行线性相关分析,得到样本相关系数r2=-0.956 8,则下列判断正确的是( )A.变量x与y正相关,变量u与v负相关,变量x与y的线性相关性较强B.变量x与y负相关,变量u与v正相关,变量x与y的线性相关性较强C.变量x与y正相关,变量u与v负相关,变量u与v的线性相关性较强D.变量x与y负相关,变量u与v正相关,变量u与v的线性相关性较强听课记录:______________________________________________________________________________________________________________________________________思维升华 判定两个变量相关性的方法(1)画散点图:若点的分布从左下角到右上角,则两个变量正相关;若点的分布从左上角到右下角,则两个变量负相关.(2)样本相关系数:当r>0时,正相关;当r<0时,负相关;|r|越接近1,相关性越强.(3)经验回归方程:当>0时,正相关;当<0时,负相关.跟踪训练1 (1)某公司2017~2022年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:年份 2017 2018 2019 2020 2021 2022利润x 12.2 14.6 16 18 20.4 22.3支出y 0.62 0.74 0.81 0.89 1 1.11根据统计资料,则利润中位数( )A.是16,x与y有正相关关系B.是17,x与y有正相关关系C.是17,x与y有负相关关系D.是18,x与y有负相关关系(2)已知相关变量x和y的散点图如图所示,若用y=b1·ln(k1x)与y=k2x+b2拟合时的样本相关系数分别为r1,r2则比较r1,r2的大小结果为( )A.r1>r2 B.r1=r2C.r1题型二 回归模型命题点1 一元线性回归模型例2 (2023·蚌埠模拟)某商业银行对存款利率与日存款总量的关系进行调研,发现存款利率每上升一定的百分点,日均存款总额就会发生一定的变化,经过统计得到下表:利率上升百分点x 0.1 0.2 0.3 0.4 0.5日均存款总额y(亿元) 0.2 0.35 0.5 0.65 0.8(1)在给出的坐标系中画出上表数据的散点图;(2)根据上表提供的数据,用最小二乘法求出y关于x的经验回归方程=x+;(3)已知现行利率下的日均存款总额为0.625亿元,试根据(2)中的经验回归方程,预测日均存款总额为现行利率下的2倍时,利率需上升多少个百分点?参考公式及数据:①=,=-,②iyi=0.9,=0.55.________________________________________________________________________________________________________________________________________________________________________________________________________________________命题点2 非线性回归模型例3 (2023·保山模拟)某县为了解乡村经济发展情况,对全县乡村经济发展情况进行调研,现对2013年以来的乡村经济收入y(单位:亿元)进行了统计分析,制成如图所示的散点图,其中年份代码x的值1—10分别对应2013年至2022年.(1)若用模型①y=a+bx,②y=a+b拟合y与x的关系,其样本相关系数分别为r1=0.851 9,r2=0.990 1,试判断哪个模型的相关程度更强?(2)根据(1)中相关程度更强的模型,求y关于x的经验回归方程(系数精确到0.01),并估计该县2026年的乡村经济收入(精确到0.01).参考数据:ti=,=i,≈3.606,≈3.742,≈3.873.(xi-)2 (ti-)2 (xi-)·(yi-) (ti-)·(yi-)72.65 2.25 126.25 4.52 235.48 49.16参考公式:对于一组数据(t1,y1),(t2,y2),…,(tn,yn),经验回归方程=t+中的斜率和截距的最小二乘估计公式分别为=,=-.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 求经验回归方程的步骤跟踪训练2 (2022·南充模拟)某特色餐馆开通了某APP的外卖服务,在一周内的某特色菜外卖份数x(单位:份)与收入y(单位:元)之间有如下的对应数据:外卖份数x(份) 2 4 5 6 8收入y(元) 30 40 60 50 70(1)在给出的坐标系中画出数据散点图;(2)请根据以上数据用最小二乘法求出收入y关于份数x的经验回归方程;(3)据此估计外卖份数为12时,收入为多少元.参考数据公式:=145,iyi=1 380,==,=-.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型三 残差分析例4 (1)(多选)下列说法正确的是( )A.在经验回归方程=-0.85x+2.3中,当解释变量x每增加1个单位时,响应变量平均减少2.3个单位B.在经验回归方程=-0.85x+2.3中,相对于样本点(1,1.2)的残差为-0.25C.在残差图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好D.若两个变量的决定系数R2越大,表示残差平方和越小,即模型的拟合效果越好(2)新能源汽车的核心部件是动力电池,电池占了新能源整车成本的很大一部分,而其中的原材料碳酸锂又是电池的主要成分.从2020年底开始,碳酸锂的价格不断升高,如表是2022年某企业的前5个月碳酸锂的价格与月份的统计数据:月份代码x 1 2 3 4 5碳酸锂价格y(万元/kg) 0.5 0.6 1 m 1.5根据表中数据,得出y关于x的经验回归方程为=0.28x+,根据数据计算出在样本点(5,1.5)处的残差为-0.06,则表中m=________.听课记录:______________________________________________________________________________________________________________________________________跟踪训练3 (1)下列命题是真命题的为( )A.经验回归方程=x+一定不过样本点B.可以用样本相关系数r来刻画两个变量x和y线性相关程度的强弱,r的值越小,说明两个变量线性相关程度越弱C.在回归分析中,决定系数R2=0.80的模型比决定系数R2=0.98的模型拟合的效果要好D.残差平方和越小的模型,拟合的效果越好(2)女高中生的体重y(kg)关于身高x(cm)的经验回归方程是=0.75x-75.5,则此方程在样本点(160,46)处的残差是________. 展开更多...... 收起↑ 资源列表 (新人教A版强基版)2024届高考一轮复习数学 第九章 9.3 一元线性回归模型及其应用 学案(含答案).docx (新人教A版强基版)2024届高考一轮复习数学 第九章 9.3 一元线性回归模型及其应用 学案(无答案).docx (新人教A版强基版)2024届高考一轮复习数学 第九章 9.3 一元线性回归模型及其应用 课件(85张PPT).pptx