(新人教A版强基版)2024届高考一轮复习数学 第五章 5.5 复 数(课件+学案)

资源下载
  1. 二一教育资源

(新人教A版强基版)2024届高考一轮复习数学 第五章 5.5 复 数(课件+学案)

资源简介

(共59张PPT)
§5.5 复 数
第五章 平面向量与复数
1.通过方程的解,认识复数.
2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.
3.掌握复数的四则运算,了解复数加、减运算的几何意义.
考试要求
内容索引
第一部分
第二部分
第三部分
落实主干知识
探究核心题型
课时精练
落实主干知识




1.复数的有关概念
(1)复数的定义:形如a+bi(a,b∈R)的数叫做复数,其中 是复数z的实部, 是复数z的虚部,i为虚数单位.
(2)复数的分类:
复数z=a+bi(a,b∈R)
实数(b 0),
虚数(b 0)(当a 0时为纯虚数).
a
b



(3)复数相等:
a+bi=c+di (a,b,c,d∈R).
(4)共轭复数:
a+bi与c+di互为共轭复数 (a,b,c,d∈R).
(5)复数的模:
向量 的模叫做复数z=a+bi的模或绝对值,记作 或 ,即|z|=|a+bi|= (a,b∈R).
a=c且b=d
|a+bi|
a=c,b=-d
|z|
3.复数的四则运算
(1)复数的加、减、乘、除运算法则:
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
①加法:z1+z2=(a+bi)+(c+di)= ;
②减法:z1-z2=(a+bi)-(c+di)= ;
③乘法:z1·z2=(a+bi)·(c+di)= ;
(a+c)+(b+d)i
(a-c)+(b-d)i
(ac-bd)+(ad+bc)i
(2)几何意义:复数加、减法可按向量的平行四边形法则或三角形法则进行.
2.-b+ai=i(a+bi)(a,b∈R).
3.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N).
4.i4n+i4n+1+i4n+2+i4n+3=0(n∈N).
5.复数z的方程在复平面上表示的图形
(1)a≤|z|≤b表示以原点O为圆心,以a和b为半径的两圆所夹的圆环;
(2)|z-(a+bi)|=r(r>0)表示以(a,b)为圆心,r为半径的圆.
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)复数z=a-bi(a,b∈R)中,虚部为b.(  )
(2)复数可以比较大小.(  )
(3)已知z=a+bi(a,b∈R),当a=0时,复数z为纯虚数.(  )
(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(  )

×
×
×
1.已知复数z满足z(1+i)=2+3i,则在复平面内z对应的点位于
A.第一象限 B.第二象限
C.第三象限 D.第四象限

因为复数z满足z(1+i)=2+3i,
所以在复平面内z对应的点位于第一象限.
2.若z=(m2+m-6)+(m-2)i为纯虚数,则实数m的值为_____.
-3
3.已知复数z满足(3+4i)·z=5(1-i),则z的虚部是_____.
因为(3+4i)·z=5(1-i),
探究核心题型

二部

例1 (1)(2023·合肥模拟)复数 (i为虚数单位)的共轭复数的虚部为
A.1 B.-1 C.i D.-i

题型一
复数的概念
所以其共轭复数为-i,则其虚部为-1.
(2)(2022·北京)若复数z满足i·z=3-4i,则|z|等于
A.1 B.5 C.7 D.25

方法二 依题意可得i2·z=(3-4i)i,所以z=-4-3i,
解决复数概念问题的方法及注意事项
(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.
(2)解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
思维升华
跟踪训练1 (1)(2023·淄博模拟)若复数z= 的实部与虚部相等,则实数a的值为
A.-3 B.-1 C.1 D.3

所以2a+1=a-2,解得a=-3,
故实数a的值为-3.


故选D.
题型二
复数的四则运算

(2)(多选)(2022·福州模拟)设复数z1,z2,z3满足z3≠0,且|z1|=|z2|,则下列结论错误的是
A.z1=±z2 B.
C.z1·z3=z2·z3 D.|z1·z3|=|z2·z3|



但z1≠z2,z1≠-z2,故A错误;
再取z3=1,显然C错误.
(1)复数的乘法:复数乘法类似于多项式的乘法运算.
(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.
跟踪训练2 (1)(2022·新高考全国Ⅱ)(2+2i)(1-2i)等于
A.-2+4i B.-2-4i
C.6+2i D.6-2i

(2+2i)(1-2i)=2-4i+2i+4=6-2i,故选D.
(2)(2023·济宁模拟)已知复数z满足z·i3=1-2i,则 的虚部为
A.1 B.-1 C.2 D.-2

∵z·i3=1-2i,
∴-zi=1-2i,
例3 (1)(2022·桂林模拟)若复数z满足z(1-3i)=1-7i,则z在复平面内对应的点位于
A.第一象限 B.第二象限
C.第三象限 D.第四象限
题型三
复数的几何意义
因为z(1-3i)=1-7i,
所以z在复平面内对应的点位于第四象限.

由复数加法、减法的几何意义知,在复平面内,
以z1,z2所对应的向量为邻边的平行四边形为正方形,

设z=a+bi,a,b∈R.

由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.
跟踪训练3 (1)设复数z满足(1-i)z=2i,则z在复平面内对应的点位于
A.第一象限 B.第二象限
C.第三象限 D.第四象限
所以z在复平面内对应的点位于第二象限.

(2)设复数z满足|z-1|=2,z在复平面内对应的点为(x,y),则
A.(x-1)2+y2=4 B.(x+1)2+y2=4
C.x2+(y-1)2=4 D.x2+(y+1)2=4
z在复平面内对应的点为(x,y),则复数z=x+yi(x,y∈R),
则|z-1|=|(x-1)+yi|=2,
由复数的模长公式可得(x-1)2+y2=4.

(3)已知复数z满足1≤|z-(1-i)|≤2,则复数z在复平面内对应的点Z所在区域的面积为
A.π B.2π C.3π D.4π
令z=a+bi且a,b∈R,则1≤|(a-1)+(b+1)i|≤2,
所以1≤(a-1)2+(b+1)2≤4,即对应区域是圆心为(1,-1),半径分别为1,2的两个同心圆的面积的差,
所以点Z所在区域的面积为4π-π=3π.

课时精练

三部

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
基础保分练
1.(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则
A.a=1,b=-3 B.a=-1,b=3
C.a=-1,b=-3 D.a=1,b=3

(b+i)i=-1+bi,则由a+3i=-1+bi,得a=-1,b=3,故选B.
2.(2022·济南模拟)复数z= (i为虚数单位)的虚部是
A.-1 B.1 C.-i D.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
所以复数z的虚部为-1.

3.(2023·烟台模拟)若复数z满足(1+2i)z=4+3i,则 等于
A.-2+i B.-2-i
C.2+i D.2-i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A.第一象限 B.第二象限
C.第三象限 D.第四象限
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
5.(2022·西安模拟)已知复数z满足(1-i)2z=2-4i,其中i为虚数单位,则复数 的虚部为
A.1 B.-1 C.i D.-i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

7.(2023·蚌埠模拟)非零复数z满足 =-zi,则复数z在复平面内对应的点位于
A.实轴 B.虚轴
C.第一或第三象限 D.第二或第四象限
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
由题意,设z=a+bi(a,b∈R),

故a=b,-b=-a,
即复数z=a+ai,在复平面内对应的点位于第一或第三象限的角平分线上.
8.(2022·文昌模拟)已知复数z= (a∈R,i是虚数单位)的虚部是-3,则复数z在复平面内对应的点位于
A.第一象限 B.第二象限
C.第三象限 D.第四象限

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
所以z在复平面内对应的点的坐标为(2,-3),在第四象限.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
9.i是虚数单位,设(1+i)x=1+yi,其中x,y是实数,则xy=___,|x+yi|=____.
1
10.(2022·潍坊模拟)若复数z满足z·i=2-i,则|z|=____.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
11.欧拉公式eiθ=cos θ+isin θ(其中e=2.718…,i为虚数单位)是由瑞士著名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,下列结论中正确的是
A.eiπ的实部为0
B.e2i在复平面内对应的点在第一象限
C.|eiθ|=1
D.eiπ的共轭复数为1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
综合提升练

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
对于A,eiπ=cos π+isin π=-1,则实部为-1,A错误;
对于B,e2i=cos 2+isin 2在复平面内对应的点为(cos 2,sin 2),
∵cos 2<0,sin 2>0,
∴e2i在复平面内对应的点位于第二象限,B错误;
对于D,eiπ=cos π+isin π,则其共轭复数为cos π-isin π=-1,D错误.
12.(多选)(2022·济宁模拟)已知复数z1=-2+i(i为虚数单位),复数z2满足|z2-1+2i|=2,z2在复平面内对应的点为M(x,y),则下列说法正确的是
A.复数z1在复平面内对应的点位于第二象限
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
C.(x+1)2+(y-2)2=4



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
对于A,复数z1在复平面内对应的点的坐标为(-2,1),该点位于第二象限,故A正确;
对于C,z2-1+2i=(x-1)+(y+2)i,
∵|z2-1+2i|=2,
∴(x-1)2+(y+2)2=4,故C错误;
对于D,z1-1+2i=-3+3i,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
因为复数(x-3)+yi(x,y∈R)的模为2,
所以(x-3)2+y2=4,
表示以(3,0)为圆心,2为半径的圆,如图所示,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
-2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
即(1+i)z4=3-i,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
所以z4的虚部是-2.
15.方程z2-4|z|+3=0在复数集内解的个数为
A.4 B.5 C.6 D.8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
拓展冲刺练

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当b=0时,a2-4|a|+3=0,a=±1或a=±3;
16.投掷两颗六个面上分别刻有1到6的点数的均匀的骰子,得到其向上的
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
即m≠n,
故有6×6-6=30(种)情况,§5.5 复 数
考试要求 1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数的四则运算,了解复数加、减运算的几何意义.
知识梳理
1.复数的有关概念
(1)复数的定义:形如a+bi(a,b∈R)的数叫做复数,其中a是复数z的实部,b是复数z的虚部,i为虚数单位.
(2)复数的分类:
复数z=a+bi(a,b∈R)
(3)复数相等:
a+bi=c+di a=c且b=d(a,b,c,d∈R).
(4)共轭复数:
a+bi与c+di互为共轭复数 a=c,b=-d(a,b,c,d∈R).
(5)复数的模:
向量的模叫做复数z=a+bi的模或绝对值,记作|a+bi|或|z|,即|z|=|a+bi|=(a,b∈R).
2.复数的几何意义
(1)复数z=a+bi(a,b∈R)复平面内的点Z(a,b).
(2)复数z=a+bi(a,b∈R)平面向量.
3.复数的四则运算
(1)复数的加、减、乘、除运算法则:
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
②减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;
④除法:===+i(c+di≠0).
(2)几何意义:复数加、减法可按向量的平行四边形法则或三角形法则进行.
如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加、减法的几何意义,即=+,=-.
常用结论
1.(1±i)2=±2i;=i;=-i.
2.-b+ai=i(a+bi)(a,b∈R).
3.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N).
4.i4n+i4n+1+i4n+2+i4n+3=0(n∈N).
5.复数z的方程在复平面上表示的图形
(1)a≤|z|≤b表示以原点O为圆心,以a和b为半径的两圆所夹的圆环;
(2)|z-(a+bi)|=r(r>0)表示以(a,b)为圆心,r为半径的圆.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)复数z=a-bi(a,b∈R)中,虚部为b.( × )
(2)复数可以比较大小.( × )
(3)已知z=a+bi(a,b∈R),当a=0时,复数z为纯虚数.( × )
(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ )
教材改编题
1.已知复数z满足z(1+i)=2+3i,则在复平面内z对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 A
解析 因为复数z满足z(1+i)=2+3i,
所以z====+i,
所以在复平面内z对应的点位于第一象限.
2.若z=(m2+m-6)+(m-2)i为纯虚数,则实数m的值为________.
答案 -3
3.已知复数z满足(3+4i)·z=5(1-i),则z的虚部是________.
答案 -
解析 因为(3+4i)·z=5(1-i),
所以z=====--i.
所以z的虚部为-.
题型一 复数的概念
例1 (1)(2023·合肥模拟)复数(i为虚数单位)的共轭复数的虚部为(  )
A.1 B.-1 C.i D.-i
答案 B
解析 因为===i,
所以其共轭复数为-i,则其虚部为-1.
(2)(2022·北京)若复数z满足i·z=3-4i,则|z|等于(  )
A.1 B.5 C.7 D.25
答案 B
解析 方法一 依题意可得z===-4-3i,所以|z|==5,故选B.
方法二 依题意可得i2·z=(3-4i)i,所以z=-4-3i,则|z|==5,故选B.
(3)(2022·泰安模拟)已知复数z满足=i,则=________.
答案 +i
解析 由=i,得z+i=zi,
∴z====-.
则=+i.
思维升华 解决复数概念问题的方法及注意事项
(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.
(2)解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
跟踪训练1 (1)(2023·淄博模拟)若复数z=的实部与虚部相等,则实数a的值为(  )
A.-3 B.-1 C.1 D.3
答案 A
解析 z===,
因为复数z=的实部与虚部相等,
所以2a+1=a-2,解得a=-3,
故实数a的值为-3.
(2)(2022·全国甲卷)若z=1+i,则|iz+3|等于(  )
A.4 B.4 C.2 D.2
答案 D
解析 因为z=1+i,所以iz+3=i(1+i)+3(1-i)=i-1+3-3i=2-2i,
所以|iz+3|=|2-2i|==2.故选D.
(3)(2022·新高考全国Ⅰ)若i(1-z)=1,则z+等于(  )
A.-2 B.-1 C.1 D.2
答案 D
解析 因为i(1-z)=1,所以z=1-=1+i,所以=1-i,所以z+=(1+i)+(1-i)=2.故选D.
题型二 复数的四则运算
例2 (1)(2022·全国甲卷)若z=-1+i,则等于(  )
A.-1+i B.-1-i
C.-+i D.--i
答案 C
解析 ===-+i,故选C.
(2)(多选)(2022·福州模拟)设复数z1,z2,z3满足z3≠0,且|z1|=|z2|,则下列结论错误的是(  )
A.z1=±z2 B.z=z
C.z1·z3=z2·z3 D.|z1·z3|=|z2·z3|
答案 ABC
解析 取z1=1-i,z2=1+i,显然满足|z1|=|z2|=,但z1≠z2,z1≠-z2,故A错误;因为z=-2i,z=2i,故B错误;再取z3=1,显然C错误.
思维升华 (1)复数的乘法:复数乘法类似于多项式的乘法运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.
跟踪训练2 (1)(2022·新高考全国Ⅱ)(2+2i)(1-2i)等于(  )
A.-2+4i B.-2-4i
C.6+2i D.6-2i
答案 D
解析 (2+2i)(1-2i)=2-4i+2i+4=6-2i,故选D.
(2)(2023·济宁模拟)已知复数z满足z·i3=1-2i,则的虚部为(  )
A.1 B.-1 C.2 D.-2
答案 B
解析 ∵z·i3=1-2i,
∴-zi=1-2i,
∴z===2+i,
∴=2-i,
∴的虚部为-1.
题型三 复数的几何意义
例3 (1)(2022·桂林模拟)若复数z满足z(1-3i)=1-7i,则z在复平面内对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 D
解析 因为z(1-3i)=1-7i,
所以z===-i,
所以z在复平面内对应的点位于第四象限.
(2)已知z1,z2为复数,|z1+z2|=2,|z1|=2,|z2|=2,则|z1-z2|等于(  )
A.1 B. C.2 D.2
答案 D
解析 由复数加法、减法的几何意义知,在复平面内,
以z1,z2所对应的向量为邻边的平行四边形为正方形,
所以|z1-z2|=2.
(3)若复数z满足|z-1+i|=3,则|z|的最大值为(  )
A.1 B.2 C.5 D.6
答案 C
解析 设z=a+bi,a,b∈R.
则|z-1+i|=3表示复平面点Z(a,b)到点(1,-)的距离为3.
则|z|的最大值为点(1,-)到(0,0)的距离加上3.
即|z|max=+3=5.
思维升华 由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.
跟踪训练3 (1)设复数z满足(1-i)z=2i,则z在复平面内对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 B
解析 由z===-1+i,故z在复平面内对应的点为(-1,1),
所以z在复平面内对应的点位于第二象限.
(2)设复数z满足|z-1|=2,z在复平面内对应的点为(x,y),则(  )
A.(x-1)2+y2=4 B.(x+1)2+y2=4
C.x2+(y-1)2=4 D.x2+(y+1)2=4
答案 A
解析 z在复平面内对应的点为(x,y),则复数z=x+yi(x,y∈R),则|z-1|=|(x-1)+yi|=2,由复数的模长公式可得(x-1)2+y2=4.
(3)已知复数z满足1≤|z-(1-i)|≤2,则复数z在复平面内对应的点Z所在区域的面积为(  )
A.π B.2π C.3π D.4π
答案 C
解析 令z=a+bi且a,b∈R,则1≤|(a-1)+(b+1)i|≤2,
所以1≤(a-1)2+(b+1)2≤4,即对应区域是圆心为(1,-1),半径分别为1,2的两个同心圆的面积的差,
所以点Z所在区域的面积为4π-π=3π.
课时精练
1.(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则(  )
A.a=1,b=-3 B.a=-1,b=3
C.a=-1,b=-3 D.a=1,b=3
答案 B
解析 (b+i)i=-1+bi,则由a+3i=-1+bi,得a=-1,b=3,故选B.
2.(2022·济南模拟)复数z=(i为虚数单位)的虚部是(  )
A.-1 B.1 C.-i D.i
答案 A
解析 因为z====1-i.
所以复数z的虚部为-1.
3.(2023·烟台模拟)若复数z满足(1+2i)z=4+3i,则等于(  )
A.-2+i B.-2-i
C.2+i D.2-i
答案 C
解析 由(1+2i)z=4+3i z===2-i,所以=2+i.
4.(2023·焦作模拟)复数z=-i5在复平面内对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 C
解析 因为z=-i5=-i=-i=--i,
所以z在复平面内对应的点为,位于第三象限.
5.(2022·西安模拟)已知复数z满足(1-i)2z=2-4i,其中i为虚数单位,则复数的虚部为(  )
A.1 B.-1 C.i D.-i
答案 B
解析 由题意,化简得z====2+i,则=2-i,
所以复数的虚部为-1.
6.(2022·临沂模拟)已知复数z=,i为虚数单位,则|z|等于(  )
A.2 B.2 C.2 D.2
答案 C
解析 z===(1+3i)(1+i)=-2+4i,|z|==2.
7.(2023·蚌埠模拟)非零复数z满足=-zi,则复数z在复平面内对应的点位于(  )
A.实轴 B.虚轴
C.第一或第三象限 D.第二或第四象限
答案 C
解析 由题意,设z=a+bi(a,b∈R),
故=-zi a-bi=-(a+bi)i=-ai+b,
故a=b,-b=-a,
即复数z=a+ai,在复平面内对应的点位于第一或第三象限的角平分线上.
8.(2022·文昌模拟)已知复数z=(a∈R,i是虚数单位)的虚部是-3,则复数z在复平面内对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 D
解析 由题意,z===2-ai的虚部是-3,
所以z在复平面内对应的点的坐标为(2,-3),在第四象限.
9.i是虚数单位,设(1+i)x=1+yi,其中x,y是实数,则xy=________,|x+yi|=________.
答案 1 
解析 因为(1+i)x=1+yi,所以x+xi=1+yi,即所以x=y=1,
所以xy=1,|x+yi|=|1+i|==.
10.(2022·潍坊模拟)若复数z满足z·i=2-i,则|z|=________.
答案 
解析 由z·i=2-i,得z===-1-2i,
∴|z|==.
11.欧拉公式eiθ=cos θ+isin θ(其中e=2.718…,i为虚数单位)是由瑞士著名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,下列结论中正确的是(  )
A.eiπ的实部为0
B.e2i在复平面内对应的点在第一象限
C.|eiθ|=1
D.eiπ的共轭复数为1
答案 C
解析 对于A,eiπ=cos π+isin π=-1,则实部为-1,A错误;
对于B,e2i=cos 2+isin 2在复平面内对应的点为(cos 2,sin 2),
∵cos 2<0,sin 2>0,
∴e2i在复平面内对应的点位于第二象限,B错误;
对于C,|eiθ|=|cos θ+isin θ|==1,C正确;
对于D,eiπ=cos π+isin π,则其共轭复数为cos π-isin π=-1,D错误.
12.(多选)(2022·济宁模拟)已知复数z1=-2+i(i为虚数单位),复数z2满足|z2-1+2i|=2,z2在复平面内对应的点为M(x,y),则下列说法正确的是(  )
A.复数z1在复平面内对应的点位于第二象限
B.=--i
C.(x+1)2+(y-2)2=4
D.|z2-z1|的最大值为3+2
答案 ABD
解析 对于A,复数z1在复平面内对应的点的坐标为(-2,1),该点位于第二象限,故A正确;
对于B,===--i,故B正确;
对于C,z2-1+2i=(x-1)+(y+2)i,
∵|z2-1+2i|=2,
∴(x-1)2+(y+2)2=4,故C错误;
对于D,z1-1+2i=-3+3i,
则|z1-1+2i|==3.
|z2-z1|=|(z2-1+2i)-(z1-1+2i)|≤|z2-1+2i|+|z1-1+2i|=2+3,故D正确.
13.若复数(x-3)+yi(x,y∈R)的模为2,则的最大值为(  )
A. B. C. D.
答案 A
解析 因为复数(x-3)+yi(x,y∈R)的模为2,
所以(x-3)2+y2=4,
表示以(3,0)为圆心,2为半径的圆,如图所示,
表示过原点和圆上的点(x,y)的直线的斜率,由图可知,当直线与圆相切时,取得最值,
设切线方程为y=kx,则=2,解得k=±,
所以的最大值为.
14.在数学中,记表达式ad-bc为由所确定的二阶行列式.若在复数域内,z1=1+i,z2=,z3=2,则当=-i时,z4的虚部为________.
答案 -2
解析 依题意知,=z1z4-z2z3,
因为z3=2,
且z2===,
所以z2z3=|z2|2=,
因此有(1+i)z4-=-i,
即(1+i)z4=3-i,
故z4===1-2i.
所以z4的虚部是-2.
15.方程z2-4|z|+3=0在复数集内解的个数为(  )
A.4 B.5 C.6 D.8
答案 C
解析 令z=a+bi(a,b∈R),则a2-b2+2abi-4+3=0,

当b=0时,a2-4|a|+3=0,a=±1或a=±3;
当a=0时,b2+4|b|-3=0,|b|=-2+或|b|=-2-(舍),即b=±(-2).
综上共有6个解,z=±1,z=±3,z=±(-2)i.
16.投掷两颗六个面上分别刻有1到6的点数的均匀的骰子,得到其向上的点数分别为m和n,则复数为虚数的概率为________.
答案 
解析 ∵复数==,
故复数为虚数需满足n2-m2≠0,
即m≠n,
故有6×6-6=30(种)情况,
∴复数为虚数的概率为=.§5.5 复 数
考试要求 1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数的四则运算,了解复数加、减运算的几何意义.
知识梳理
1.复数的有关概念
(1)复数的定义:形如a+bi(a,b∈R)的数叫做复数,其中________是复数z的实部,______是复数z的虚部,i为虚数单位.
(2)复数的分类:
复数z=a+bi(a,b∈R)
(3)复数相等:
a+bi=c+di ____________(a,b,c,d∈R).
(4)共轭复数:
a+bi与c+di互为共轭复数 ____________(a,b,c,d∈R).
(5)复数的模:
向量的模叫做复数z=a+bi的模或绝对值,记作________或________,即|z|=|a+bi|=________(a,b∈R).
2.复数的几何意义
(1)复数z=a+bi(a,b∈R)复平面内的点Z(a,b).
(2)复数z=a+bi(a,b∈R)平面向量.
3.复数的四则运算
(1)复数的加、减、乘、除运算法则:
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
①加法:z1+z2=(a+bi)+(c+di)=____________________;
②减法:z1-z2=(a+bi)-(c+di)=____________________;
③乘法:z1·z2=(a+bi)·(c+di)=____________________;
④除法:===________________(c+di≠0).
(2)几何意义:复数加、减法可按向量的平行四边形法则或三角形法则进行.
如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加、减法的几何意义,即=__________,=________________.
常用结论
1.(1±i)2=±2i;=i;=-i.
2.-b+ai=i(a+bi)(a,b∈R).
3.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N).
4.i4n+i4n+1+i4n+2+i4n+3=0(n∈N).
5.复数z的方程在复平面上表示的图形
(1)a≤|z|≤b表示以原点O为圆心,以a和b为半径的两圆所夹的圆环;
(2)|z-(a+bi)|=r(r>0)表示以(a,b)为圆心,r为半径的圆.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)复数z=a-bi(a,b∈R)中,虚部为b.(  )
(2)复数可以比较大小.(  )
(3)已知z=a+bi(a,b∈R),当a=0时,复数z为纯虚数.(  )
(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(  )
教材改编题
1.已知复数z满足z(1+i)=2+3i,则在复平面内z对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.若z=(m2+m-6)+(m-2)i为纯虚数,则实数m的值为________.
3.已知复数z满足(3+4i)·z=5(1-i),则z的虚部是________.
题型一 复数的概念
例1 (1)(2023·合肥模拟)复数(i为虚数单位)的共轭复数的虚部为(  )
A.1 B.-1 C.i D.-i
(2)(2022·北京)若复数z满足i·z=3-4i,则|z|等于(  )
A.1 B.5 C.7 D.25
(3)(2022·泰安模拟)已知复数z满足=i,则=________.
听课记录: ______________________________________________________________
________________________________________________________________________
思维升华 解决复数概念问题的方法及注意事项
(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.
(2)解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
跟踪训练1 (1)(2023·淄博模拟)若复数z=的实部与虚部相等,则实数a的值为(  )
A.-3 B.-1 C.1 D.3
(2)(2022·全国甲卷)若z=1+i,则|iz+3|等于(  )
A.4 B.4 C.2 D.2
(3)(2022·新高考全国Ⅰ)若i(1-z)=1,则z+等于(  )
A.-2 B.-1 C.1 D.2
题型二 复数的四则运算
例2 (1)(2022·全国甲卷)若z=-1+i,则等于(  )
A.-1+i B.-1-i
C.-+i D.--i
(2)(多选)(2022·福州模拟)设复数z1,z2,z3满足z3≠0,且|z1|=|z2|,则下列结论错误的是(  )
A.z1=±z2
B.z=z
C.z1·z3=z2·z3
D.|z1·z3|=|z2·z3|
听课记录: ______________________________________________________________
________________________________________________________________________
思维升华 (1)复数的乘法:复数乘法类似于多项式的乘法运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.
跟踪训练2 (1)(2022·新高考全国Ⅱ)(2+2i)(1-2i)等于(  )
A.-2+4i B.-2-4i
C.6+2i D.6-2i
(2)(2023·济宁模拟)已知复数z满足z·i3=1-2i,则的虚部为(  )
A.1 B.-1 C.2 D.-2
题型三 复数的几何意义
例3 (1)(2022·桂林模拟)若复数z满足z(1-3i)=1-7i,则z在复平面内对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
(2)已知z1,z2为复数,|z1+z2|=2,|z1|=2,|z2|=2,则|z1-z2|等于(  )
A.1 B. C.2 D.2
(3)若复数z满足|z-1+i|=3,则|z|的最大值为(  )
A.1 B.2 C.5 D.6
听课记录: ______________________________________________________________
________________________________________________________________________
思维升华 由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.
跟踪训练3 (1)设复数z满足(1-i)z=2i,则z在复平面内对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
(2)设复数z满足|z-1|=2,z在复平面内对应的点为(x,y),则(  )
A.(x-1)2+y2=4 B.(x+1)2+y2=4
C.x2+(y-1)2=4 D.x2+(y+1)2=4
(3)已知复数z满足1≤|z-(1-i)|≤2,则复数z在复平面内对应的点Z所在区域的面积为(  )
A.π B.2π C.3π D.4π

展开更多......

收起↑

资源列表