高二物理竞赛:半导体物理器件 课件(共12张PPT)

资源下载
  1. 二一教育资源

高二物理竞赛:半导体物理器件 课件(共12张PPT)

资源简介

(共12张PPT)
半导体物理器件
半导体物理器件
  本章从半导体器件的工作机理出发,简单介绍半导体物理基础知识,包括本征半导体,杂质半导体,PN结;分别讨论晶体二极管的特性和典型应用电路,双极型晶体管和场效应管的结构、工作机理、特性和应用电路,重点是掌握器件的特性。
媒质
导体:对电信号有良好的导通性,如绝大多数金属,电解液,以及电离气体。
绝缘体:对电信号起阻断作用,如玻璃和橡胶,其电阻率介于108 ~ 1020 ·m。
半导体:导电能力介于导体和绝缘体之间,如硅 (Si) 、锗 (Ge) 和砷化镓 (GaAs) 。
  半导体的导电能力随温度、光照和掺杂等因素发生显著变化,这些特点使它们成为制作半导体元器件的重要材料。
4.1.1 本征半导体纯净的硅和锗单晶体称为本征半导体。  硅和锗的原子最外层轨道上都有四个电子,称为价电子,每个价电子带一个单位的负电荷。因为整个原子呈电中性,而其物理化学性质很大程度上取决于最外层的价电子,所以研究中硅和锗原子可以用简化模型代表 。  每个原子最外层轨道上的四个价电子为相邻原子核所共有,形成共价键。共价键中的价电子是不能导电的束缚电子。  价电子可以获得足够大的能量,挣脱共价键的束缚,游离出去,成为自由电子,并在共价键处留下带有一个单位的正电荷的空穴。这个过程称为本征激发。  本征激发产生成对的自由电子和空穴,所以本征半导体中自由电子和空穴的数量相等。  价电子的反向递补运动等价为空穴在半导体中自由移动。因此,在本征激发的作用下,本征半导体中出现了带负电的自由电子和带正电的空穴,二者都可以参与导电,统称为载流子。  自由电子和空穴在自由移动过程中相遇时,自由电子填入空穴,释放出能量,从而消失一对载流子,这个过程称为复合,  平衡状态时,载流子的浓度不再变化。分别用ni和pi表示自由电子和空穴的浓度(cm-3),理论上其中T为绝对温度(K);EG0为T= 0 K时的禁带宽度,硅原子为1.21 eV,锗为0.78 eV;k= 8.63 10-5eV / K为玻尔兹曼常数;A0为常数,硅材料为3.87 1016cm- 3K-3 / 2,锗为1.76 1016cm-3K-3 / 2。4.1.2 N型半导体和P型半导体  本征激发产生的自由电子和空穴的数量相对很少,这说明本征半导体的导电能力很弱。我们可以人工少量掺杂某些元素的原子,从而显著提高半导体的导电能力,这样获得的半导体称为杂质半导体。根据掺杂元素的不同,杂质半导体分为N型半导体和P型半导体。一、N型半导体  在本征半导体中掺入五价原子,即构成N型半导体。N型半导体中每掺杂一个杂质元素的原子,就提供一个自由电子,从而大量增加了自由电子的浓度一一施主电离多数载流子一一自由电子少数载流子一一空穴但半导体仍保持电中性    热平衡时,杂质半导体中多子浓度和少子浓度的乘积恒等于本征半导体中载流子浓度ni的平方,所以空穴的浓度pn为因为ni容易受到温度的影响发生显著变化,所以pn也随环境的改变明显变化。自由电子浓度杂质浓度二、P型半导体  在本征半导体中掺入三价原子,即构成P型半导体。P型半导体中每掺杂一个杂质元素的原子,就提供一个空穴,从而大量增加了空穴的浓度一一受主电离多数载流子一一空穴少数载流子一一自由电子但半导体仍保持电中性  而自由电子的浓度np为环境温度也明显影响np的取值。空穴浓度掺杂浓庹4.1.3 漂移电流和扩散电流  半导体中载流子进行定向运动,就会形成半导体中的电流。  半导体电流  半导体电流漂移电流:在电场的作用下,自由电子会逆着电场方向漂移,而空穴则顺着电场方向漂移,这样产生的电流称为漂移电流,该电流的大小主要取决于载流子的浓度,迁移率和电场强度。扩散电流:半导体中载流子浓度不均匀分布时,载流子会从高浓度区向低浓度区扩散,从而形成扩散电流,该电流的大小正比于载流子的浓度差即浓度梯度的大小。4.2 PN结  通过掺杂工艺,把本征半导体的一边做成P型半导体,另一边做成N型半导体,则P型半导体和N型半导体的交接面处会形成一个有特殊物理性质的薄层,称为PN结。4.2.1 PN结的形成多子扩散    空间电荷区,内建电场和内建电位差的产生少子漂移动态平衡  空间电荷区又称为耗尽区或势垒区。在掺杂浓度不对称的PN结中,耗尽区在重掺杂一边延伸较小,而在轻掺杂一边延伸较大。  PN结的单向导电特性:PN结只需要较小的正向电压,就可以使耗尽区变得很薄,从而产生较大的正向电流,而且正向电流随正向电压的微小变化会发生明显改变。而在反偏时,少子只能提供很小的漂移电流,并且基本上不随反向电压而变化。4.2.3 PN结的击穿特性当PN结上的反向电压足够大时,其中的反向电流会急剧增大,这种现象称为PN结的击穿。  雪崩击穿:反偏的PN结中,耗尽区中少子在漂移运动中被电场作功,动能增大。当少子的动能足以使其在与价电子碰撞时发生碰撞电离,把价电子击出共价键,产生一对自由电子和空穴,连锁碰撞使得耗尽区内的载流子数量剧增,引起反向电流急剧增大。雪崩击穿出现在轻掺杂的PN结中。齐纳击穿:在重掺杂的PN结中,耗尽区较窄,所以反向电压在其中产生较强的电场。电场强到能直接将价电子拉出共价键,发生场致激发,产生大量的自由电子和空穴,使得反向电流急剧增大,这种击穿称为齐纳击穿。  PN结击穿时,只要限制反向电流不要过大,就可以保护PN结不受损坏。PN结击穿

展开更多......

收起↑

资源预览