6.2.1排列 学案(无答案)

资源下载
  1. 二一教育资源

6.2.1排列 学案(无答案)

资源简介

6.2排列
学习目标
理解并掌握排列的概念.
2.能用计数原理推导排列数公式.
3.能用排列数公式解决简单的实际问题
自主学习
【自学指导】阅读课本14页--20页,思考什么排列的概念,并理解排列数公式。(5分钟)
【知识点梳理】
知识点一 排列的定义
一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
知识点二 排列相同的条件
两个排列相同的充要条件:
(1)两个排列的元素完全相同.
(2)元素的排列顺序也相同.
1.123与321是相同的排列.(   )
2.同一个排列中,同一个元素不能重复出现.(  )
3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(  )
4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.(  )
知识点三 排列数公式及全排列
1.排列数公式的两种形式
(1)A=n(n-1)(n-2)…(n-m+1),其中m,n∈N*,并且m≤n.
(2)A=.
2.全排列:把n个不同的元素全部取出的一个排列,叫做n个元素的一个全排列,全排列数为A=n!(叫做n的阶乘).规定:0!=1.
1.A=________.
2.A=132,则n=________.
3.A=20,则x=________.
4.甲、乙、丙三人站成一排,共有________种不同站队方式.(用排列数表示)
5.=________.
排列方法:
【合作探究】
一、排列数公式的应用
命题角度1 利用排列数公式求值
例1-1 计算:A和A.
命题角度2 利用排列数公式化简
例1-2 (1)用排列数表示(55-n)(56-n)…(69-n)(n∈N*且n<55);
(2)化简:n(n+1)(n+2)(n+3)…(n+m).
命题角度3 利用排列数公式证明
例1-3 求证:A-A=mA.
反思感悟 排列数公式的选择
(1)排列数公式的乘积形式适用于计算排列数.
(2)排列数公式的阶乘形式主要用于与排列数有关的证明、解方程和不等式等问题,具体应用时注意阶乘的性质,提取公因式,可以简化计算.
跟踪训练1 不等式A<6A的解集为(  )
A.[2,8] B.[2,6] C.(7,12) D.{8}
二、排队问题
命题角度1 “相邻”与“不相邻”问题
例2-1 3名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法?
(1)男、女各站在一起;
(2)男生必须排在一起;
(3)男生不能排在一起;
(4)男生互不相邻,且女生也互不相邻.
命题角度2 定序问题
例2-2 7人站成一排.
(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?
(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少不同的排列方法?
命题角度3 元素的“在”与“不在”问题
例2-3 从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题.
(1)甲不在首位的排法有多少种?
(2)甲既不在首位也不在末位的排法有多少种?
(3)甲与乙既不在首位也不在末位的排法有多少种?
(4)甲不在首位,同时乙不在末位的排法有多少种?
反思感悟 排队问题的解题策略
排队问题除涉及特殊元素、特殊位置外,还往往涉及相邻、不相邻、定序等问题.
(1)对于相邻问题,可采用“捆绑法”解决.即将相邻的元素视为一个整体进行排列.
(2)对于不相邻问题,可采用“插空法”解决.即先排其余的元素,再将不相邻的元素插入空中.
(3)对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.
(4)对于“在”与“不在”问题,可采用“特殊元素优先考虑,特殊位置优先安排”的原则解决.
跟踪训练2 三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?
(4)如果两端不能都排女生,可有多少种不同的排法?
【练习2】从0,1,2,3这四个数字中,每次取出三个不同的数字排成一个三位数.
(1)能组成多少个不同的三位数,并写出这些三位数.
(2)若组成这些三位数中,1不能在百位,2不能在十位,3不能在个位,则这样的三位数共有多少个,并写出这些三位数.
四、当堂检测
1.设m∈N*,且m<15,则A等于(  )
A.(20-m)(21-m)(22-m)(23-m)(24-m)(25-m)
B.(20-m)(19-m)(18-m)(17-m)(16-m)
C.(20-m)(19-m)(18-m)(17-m)(16-m)(15-m)
D.(19-m)(18-m)(17-m)(16-m)(15-m)
2.已知A-A=10,则n的值为(  )
A.4 B.5 C.6 D.7
3.有4名司机,4名售票员要分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方法有(  )
A.A种 B.A种
C.AA种 D.2A种
4.要从a,b,c,d,e 5个人中选出1名组长和1名副组长,但a不能当副组长,则不同的选法种数是(  )
A.20 B.16 C.10 D.6
5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(  )
A.3×3! B.3×(3!)3 C.(3!)4 D.9!
6.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)
7.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法.
8.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)
9.某次文艺晚会上共演出8个节目,其中2个唱歌节目、3个舞蹈节目、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?
(1)一个唱歌节目开头,另一个放在最后压台;
(2)2个唱歌节目互不相邻;
(3)2个唱歌节目相邻且3个舞蹈节目不相邻.
10.用0,1,2,3,4五个数字:
(1)可组成多少个五位数?
(2)可组成多少个无重复数字的五位数?
(3)可组成多少个无重复数字的且是3的倍数的三位数?
(4)可组成多少个无重复数字的五位奇数?
11.(多选)下列各式中与排列数A相等的是(  )
A. B.n(n-1)(n-2)…(n-m)
C. D.A·A
12.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lg a-lg b的不同值的个数是(  )
A.9 B.10 C.18 D.20
13.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)
14.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示________种不同的信号.
15.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天.若7位员工中的甲、乙被安排在相邻两天值班,丙不在10月1日值班,丁不在10月7日值班,则不同的安排方案共有________种.
16.一条铁路有n个车站,为适应客运需要,新增了m个车站,且知m>1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?

展开更多......

收起↑

资源预览