资源简介 (共61张PPT)§2.4 函数的对称性第二章 函 数1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.考试要求内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练落实主干知识第一部分1.奇函数、偶函数的对称性(1)奇函数关于______对称,偶函数关于_____对称.(2)若f(x-2)是偶函数,则函数f(x)图象的对称轴为_______;若f(x-2)是奇函数,则函数f(x)图象的对称中心为_______.2.若函数y=f(x)的图象关于直线x=a对称,则f(a-x)=f(a+x);若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点_____对称.原点y轴x=-2(-2,0)(a,0)3.两个函数图象的对称(1)函数y=f(x)与y=f(-x)关于_____对称;(2)函数y=f(x)与y=-f(x)关于_____对称;(3)函数y=f(x)与y=-f(-x)关于_____对称.y轴x轴原点判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y=f(x+1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.( )(2)函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(1,0)对称.( )(3)若函数f(x)满足f(x-1)+f(x+1) =0,则f(x)的图象关于y轴对称.( )(4)若函数f(x)满足f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称.( )√××√A.(0,0) B.(0,1)C.(1,0) D.(1,1)√2.已知定义在R上的函数f(x)在[-2,+∞)上单调递减,且f(-2-x)=f(-2+x),则f(-4)与f(1)的大小关系为___________.f(-4)>f(1)∵f(-2-x)=f(-2+x),∴f(x)关于直线x=-2对称,又f(x)在[-2,+∞)上单调递减,∴f(-4)=f(0)>f(1),故f(-4)>f(1).3.偶函数y=f(x)的图象关于直线x=2对称,且当x∈[2,3]时,f(x)=2x-1,则f(-1)=___.5∵f(x)为偶函数,∴f(-1)=f(1),由f(x)的图象关于x=2对称,可得f(1)=f(3)=2×3-1=5.探究核心题型第二部分例1 (1)已知定义在R上的函数f(x)是奇函数,对x∈R都有f(x+1)=f(1-x),当f(-3)=-2时,则f(2 023)等于A.-2 B.2C.0 D.-4√题型一轴对称问题定义在R上的函数f(x)是奇函数,且对x∈R都有f(x+1)=f(1-x),故函数f(x)的图象关于直线x=1对称,∴f(x)=f(2-x),故f(-x)=f(2+x)=-f(x),∴f(x)=-f(2+x)=f(4+x),∴f(x)是周期为4的周期函数.则f(2 023)=f(505×4+3)=f(3)=-f(-3)=2.(2)已知函数f(x)的定义域为R,且f(x+2)为偶函数,f(x)在[2,+∞)上单调递减,则不等式f(x-1)>f(1)的解集为________.(2,4)∵f(x+2)是偶函数,∴f(x+2)的图象关于直线x=0对称,∴f(x)的图象关于直线x=2对称,又f(x)在[2,+∞)上单调递减,∴f(x)在(-∞,2]上单调递增.又f(x-1)>f(1),∴|x-1-2|<|1-2|,即|x-3|<1,解得2∴原不等式的解集为(2,4).函数y=f(x)的图象关于直线x=a对称 f(x)=f(2a-x) f(a-x)=f(a+x);若函数y=f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x= 成轴对称.思维升华跟踪训练1 (1)已知函数f(x)=-x2+bx+c,且f(x+1)是偶函数,则f(-1),f(1),f(2)的大小关系是A.f(-1)B.f(1)C.f(2)D.f(-1)√因为f(x+1)是偶函数,所以其对称轴为x=0,所以f(x)的对称轴为x=1,又二次函数f(x)=-x2+bx+c的开口向下,根据自变量离对称轴的距离可得f(-1)(2)如果函数f(x)对任意的实数x,都有f(1+x)=f(-x),且当x≥ 时,f(x)=log2(3x-1),那么函数f(x)在[-2,0]上的最大值与最小值之和为A.2 B.3C.4 D.-1√那么求函数f(x)在[-2,0]上的最大值与最小值之和,即求函数f(x)在[1,3]上的最大值与最小值之和,例2 (1)(多选)若定义在R上的偶函数f(x)的图象关于点(2,0)对称,则下列说法正确的是A.f(x)=f(-x)B.f(2+x)+f(2-x)=0C.f(-x)=-f(x+4)D.f(x+2)=f(x-2)√题型二中心对称问题√√因为f(x)为偶函数,则f(x)=f(-x),故A正确;因为f(x)的图象关于点(2,0)对称,对于f(x)的图象上的点(x,y)关于(2,0)的对称点(4-x,-y)也在函数图象上,即f(4-x)=-y=-f(x),用2+x替换x得到,f[4-(2+x)]=-f(2+x),即f(2+x)+f(2-x)=0,故B正确;由f(2+x)+f(2-x)=0,令x=x+2,可得f(x+4)+f(-x)=0,即f(-x)=-f(x+4),故C正确;由B知,f(2+x)=-f(2-x)=-f(x-2),故D错误.(2)已知函数f(x)满足f(x)+f(-x)=2,g(x)= +1,y=f(x)与y=g(x)有4个交点,则这4个交点的纵坐标之和为_____.4因为f(x)+f(-x)=2,所以y=f(x)的图象关于点(0,1)对称,所以4个交点的纵坐标之和为2×2=4.跟踪训练2 (1)函数f(x)=ex-2-e2-x的图象关于A.点(-2,0)对称 B.直线x=-2对称C.点(2,0)对称 D.直线x=2对称√∵f(x)=ex-2-e2-x,∴f(2+x)=e2+x-2-e2-(2+x)=ex-e-x,f(2-x)=e2-x-2-e2-(2-x)=e-x-ex,所以f(2+x)+f(2-x)=0,因此,函数f(x)的图象关于点(2,0)对称.(2)(2023·郑州模拟)若函数f(x)满足f(2-x)+f(x)=-2,则下列函数中为奇函数的是A.f(x-1)-1 B.f(x-1)+1C.f(x+1)-1 D.f(x+1)+1√因为f(2-x)+f(x)=-2,所以f(x)关于点(1,-1)对称,所以将f(x)向左平移1个单位,再向上平移1个单位得到函数y=f(x+1)+1,该函数的对称中心为(0,0),故y=f(x+1)+1为奇函数.例3 已知函数y=f(x)是定义域为R的函数,则函数y=f(x+2)的图象与y=f(4-x)的图象A.关于直线x=1对称B.关于直线x=3对称C.关于直线y=3对称D.关于点(3,0)对称题型三两个函数图象的对称√设P(x0,y0)为y=f(x+2)图象上任意一点,则y0=f(x0+2)=f(4-(2-x0)),所以点Q(2-x0,y0)在函数y=f(4-x)的图象上,而P(x0,y0)与Q(2-x0,y0)关于直线x=1对称,所以函数y=f(x+2)的图象与y=f(4-x)的图象关于直线x=1对称.跟踪训练3 设函数y=f(x)的定义域为R,则函数y=f(x-1)的图象与y=f(1-x)的图象A.关于y轴对称B.关于x轴对称C.关于直线x=1对称D.关于直线y=1对称√A选项,函数y=f(x-1)关于y轴对称的函数为y=f(-x-1)≠f(1-x),故A错误;B选项,函数y=f(x-1)关于x轴对称的函数为y=-f(x-1)≠f(1-x),故B错误;C选项,函数y=f(x-1)关于直线x=1对称的函数为y=f(2-x-1)=f(1-x),故C正确;D选项,函数y=f(x-1)关于直线y=1对称的函数为y=2-f(x-1)≠f(1-x),故D错误.课时精练第三部分1.已知函数y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点A.(-1,2) B.(1,2)C.(-1,-2) D.(-2,1)1234567891011121314√基础保分练函数y=f(x)与y=-f(-x)的图象关于原点对称,又y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点(-1,2).2.已知函数f(x)=2|x-a|的图象关于直线x=2对称,则a等于A.1 B.2C.0 D.-2√1234567891011121314函数y=2|x|的图象关于y轴对称,将函数y=2|x|的图象向右平移2个单位可得函数y=2|x-2|的图象,所以函数y=2|x-2|的图象关于直线x=2对称,故a=2.3.已知奇函数f(x)满足f(5)=1,且f(x-2)的图象关于x=3对称,则f(2 025)等于A.-1 B.1C.0 D.31234567891011121314√1234567891011121314∵函数f(x-2)的图象关于直线x=3对称,∴f(x)的图象关于直线x=1对称,∴f(-x)=f(x+2),∵f(x)为奇函数,∴f(-x)=f(2+x)=-f(x),∴f(x+4)=f(x),∴f(x)是周期为4的周期函数,∴f(2 025)=f(1)=f(5)=1.12345678910111213144.(2023·郑州质检)若函数f(x)满足f(-x)+f(x)=2,则下列函数是奇函数的是A.f(x-1)-1 B.f(x+1)+1C.f(x)-1 D.f(x)+1√1234567891011121314∵f(-x)+f(x)=2,∴f(x)的图象关于(0,1)对称,将y=f(x)的图象向下平移1个单位得函数y=f(x)-1的图象,该图象关于(0,0)对称,∴y=f(x)-1为奇函数.1234567891011121314A.(-∞,e)∪(e3,+∞) B.(1,e2)C.(e,e3) D.(e,+∞)√12345678910111213146.(多选)定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,则下列关于f(x)的结论中正确的有A.f(x)的图象关于直线x=1对称B.f(x)在[0,1]上单调递增C.f(x)在[1,2]上单调递减D.f(2)=f(0)√√1234567891011121314根据题意,若f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),即f(x+2)=f(x),f(x)是周期为2的周期函数,则有f(2)=f(0),故D正确;若f(x+2)=f(x),且函数f(x)为偶函数,则有f(x+2)=f(-x),则函数f(x)的图象关于直线x=1对称,故A正确;f(x)在[-1,0]上单调递增,且函数f(x)为偶函数,则函数f(x)在[0,1]上单调递减,故B错误;1234567891011121314f(x)在[-1,0]上单调递增,且f(x)是周期为2的周期函数,则函数f(x)在[1,2]上单调递增,故C错误.7.与f(x)=ex关于直线x=1对称的函数是________.1234567891011121314y=e2-xf(x)=ex关于直线x=1对称的是f(2-x)=e2-x,即y=e2-x.8.(2022·江苏七市联考)写出一个同时具有性质①②③的函数f(x)=__________________.①f(x)是定义域为R的奇函数;②f(1+x)=f(1-x);③f(1)=2.123456789101112131412345678910111213141234567891011121314对任意的x∈R,2x+2-x>0,故函数f(x)的定义域为R,1234567891011121314123456789101112131410.函数y=f(x)的图象关于点P(a,b)成中心对称的充要条件是函数y=f(x+a)-b为奇函数.(1)若f(x)=x3-3x2.求此函数图象的对称中心;12345678910111213141234567891011121314设函数f(x)=x3-3x2图象的对称中心为P(a,b),g(x)=f(x+a)-b,则g(x)为奇函数,故g(-x)=-g(x),故f(-x+a)-b=-f(x+a)+b,即f(-x+a)+f(x+a)=2b,即[(-x+a)3-3(-x+a)2]+[(x+a)3-3(x+a)2]=2b.所以函数f(x)=x3-3x2图象的对称中心为(1,-2).(2)类比上述推广结论,写出“函数y=f(x)的图象关于y轴成轴对称的充要条件是函数y=f(x)为偶函数”的一个推广结论.1234567891011121314推论:函数y=f(x)的图象关于直线x=a成轴对称的充要条件是函数y=f(x+a)为偶函数.11.(多选)已知函数y=f(x),x∈R,下列4个命题中是真命题的是A.若y=f(x+1)为偶函数,则f(x)的图象自身关于直线x=1对称B.函数f(x-1)与f(1-x)的图象关于直线x=1对称C.若f(x)为奇函数,且f(x+2)=-f(x),则f(x)的图象自身关于点(1,0)对称D.若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象自身关于直线x=1对称1234567891011121314综合提升练√√√1234567891011121314对于A,若y=f(x+1)为偶函数,其函数图象关于直线x=0对称,故y=f(x+1)的图象向右平移1个单位得f(x)的图象,故f(x)的图象自身关于直线x=1对称,正确;对于B,将f(x)的图象向右平移1个单位,可得f(x-1)的图象,将f(x)的图象关于y轴对称得f(-x)的图象,然后将其图象向右平移1个单位得f(1-x)的图象,故f(x-1)与f(1-x)的图象关于直线x=1对称,故正确;1234567891011121314对于C,若f(x)为奇函数,且f(x+2)=-f(x)=f(-x),故f(x+1)=f(1-x),所以f(x)的图象自身关于直线x=1对称,故不正确;对于D,因为f(x)为奇函数,且f(x)=f(-x-2),故f(x+2)=-f(x)=f(-x),所以f(x)的图象自身关于直线x=1对称,故正确.12.已知函数f(x)满足f(x+2)是偶函数,若函数y=|x2-4x-5|与函数y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xn,yn),则横坐标之和x1+x2+…+xn=____.12345678910111213142n1234567891011121314因为f(x+2)是偶函数,所以函数f(x+2)的图象关于直线x=0对称,又因为函数f(x+2)向右平移2个单位得到函数f(x)的图象,所以函数f(x)的图象关于直线x=2对称,因为y=|x2-4x-5|=|(x-2)2-9|,所以函数y=|x2-4x-5|的图象也关于直线x=2对称,1234567891011121314拓展冲刺练A.0对 B.1对C.2对 D.3对√1234567891011121314作出函数y=f(x)的图象,如图所示,再作出-y=f(-x),记为曲线C,由图象可知,满足条件的对称点只有一对,图中的A,B就是符合题意的点.1234567891011121314√1234567891011121314当x>2时,f(x)=2x-2-4=2|x-2|-4,所以对任意的x∈R,f(x)=2|x-2|-4,则f(4-x)=2|4-x-2|-4=2|x-2|-4=f(x),所以函数f(x)的图象关于直线x=2对称,因为函数f(x)在[2,+∞)上单调递增,由f(2+log4x)>f(1-log4x)可得|2+log4x-2|>|1-log4x-2|,1234567891011121314§2.4 函数的对称性考试要求 1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.知识梳理1.奇函数、偶函数的对称性(1)奇函数关于原点对称,偶函数关于y轴对称.(2)若f(x-2)是偶函数,则函数f(x)图象的对称轴为x=-2;若f(x-2)是奇函数,则函数f(x)图象的对称中心为(-2,0).2.若函数y=f(x)的图象关于直线x=a对称,则f(a-x)=f(a+x);若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点(a,0)对称.3.两个函数图象的对称(1)函数y=f(x)与y=f(-x)关于y轴对称;(2)函数y=f(x)与y=-f(x)关于x轴对称;(3)函数y=f(x)与y=-f(-x)关于原点对称.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y=f(x+1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.( √ )(2)函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(1,0)对称.( × )(3)若函数f(x)满足f(x-1)+f(x+1) =0,则f(x)的图象关于y轴对称.( × )(4)若函数f(x)满足f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称.( √ )教材改编题1.函数f(x)=图象的对称中心为( )A.(0,0) B.(0,1)C.(1,0) D.(1,1)答案 B解析 因为f(x)==1+,由y=向上平移一个单位得到y=1+,又y=关于(0,0)对称,所以f(x)=1+的图象关于(0,1)对称.2.已知定义在R上的函数f(x)在[-2,+∞)上单调递减,且f(-2-x)=f(-2+x),则f(-4)与f(1)的大小关系为________.答案 f(-4)>f(1)解析 ∵f(-2-x)=f(-2+x),∴f(x)关于直线x=-2对称,又f(x)在[-2,+∞)上单调递减,∴f(-4)=f(0)>f(1),故f(-4)>f(1).3.偶函数y=f(x)的图象关于直线x=2对称,且当x∈[2,3]时,f(x)=2x-1,则f(-1)=________.答案 5解析 ∵f(x)为偶函数,∴f(-1)=f(1),由f(x)的图象关于x=2对称,可得f(1)=f(3)=2×3-1=5.题型一 轴对称问题例1 (1)已知定义在R上的函数f(x)是奇函数,对x∈R都有f(x+1)=f(1-x),当f(-3)=-2时,则f(2 023)等于( )A.-2 B.2 C.0 D.-4答案 B解析 定义在R上的函数f(x)是奇函数,且对x∈R都有f(x+1)=f(1-x),故函数f(x)的图象关于直线x=1对称,∴f(x)=f(2-x),故f(-x)=f(2+x)=-f(x),∴f(x)=-f(2+x)=f(4+x),∴f(x)是周期为4的周期函数.则f(2 023)=f(505×4+3)=f(3)=-f(-3)=2.(2)已知函数f(x)的定义域为R,且f(x+2)为偶函数,f(x)在[2,+∞)上单调递减,则不等式f(x-1)>f(1)的解集为________.答案 (2,4)解析 ∵f(x+2)是偶函数,∴f(x+2)的图象关于直线x=0对称,∴f(x)的图象关于直线x=2对称,又f(x)在[2,+∞)上单调递减,∴f(x)在(-∞,2]上单调递增.又f(x-1)>f(1),∴|x-1-2|<|1-2|,即|x-3|<1,解得2∴原不等式的解集为(2,4).思维升华 函数y=f(x)的图象关于直线x=a对称 f(x)=f(2a-x) f(a-x)=f(a+x);若函数y=f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=成轴对称.跟踪训练1 (1)已知函数f(x)=-x2+bx+c,且f(x+1)是偶函数,则f(-1),f(1),f(2)的大小关系是( )A.f(-1)B.f(1)C.f(2)D.f(-1)答案 D解析 因为f(x+1)是偶函数,所以其对称轴为x=0,所以f(x)的对称轴为x=1,又二次函数f(x)=-x2+bx+c的开口向下,根据自变量离对称轴的距离可得f(-1)(2)如果函数f(x)对任意的实数x,都有f(1+x)=f(-x),且当x≥时,f(x)=log2(3x-1),那么函数f(x)在[-2,0]上的最大值与最小值之和为( )A.2 B.3 C.4 D.-1答案 C解析 根据f(1+x)=f(-x)可知,f(x)的图象关于x=对称,那么求函数f(x)在[-2,0]上的最大值与最小值之和,即求函数f(x)在[1,3]上的最大值与最小值之和,因为f(x)=log2(3x-1)在上单调递增,所以最小值与最大值分别为f(1)=1,f(3)=3,f(1)+f(3)=4.题型二 中心对称问题例2 (1)(多选)若定义在R上的偶函数f(x)的图象关于点(2,0)对称,则下列说法正确的是( )A.f(x)=f(-x)B.f(2+x)+f(2-x)=0C.f(-x)=-f(x+4)D.f(x+2)=f(x-2)答案 ABC解析 因为f(x)为偶函数,则f(x)=f(-x),故A正确;因为f(x)的图象关于点(2,0)对称,对于f(x)的图象上的点(x,y)关于(2,0)的对称点(4-x,-y)也在函数图象上,即f(4-x)=-y=-f(x),用2+x替换x得到,f[4-(2+x)]=-f(2+x),即f(2+x)+f(2-x)=0,故B正确;由f(2+x)+f(2-x)=0,令x=x+2,可得f(x+4)+f(-x)=0,即f(-x)=-f(x+4),故C正确;由B知,f(2+x)=-f(2-x)=-f(x-2),故D错误.(2)已知函数f(x)满足f(x)+f(-x)=2,g(x)=+1,y=f(x)与y=g(x)有4个交点,则这4个交点的纵坐标之和为________.答案 4解析 因为f(x)+f(-x)=2,所以y=f(x)的图象关于点(0,1)对称,y=g(x)=+1的图象也关于点(0,1)对称,则交点关于(0,1)对称,所以4个交点的纵坐标之和为2×2=4.思维升华 函数y=f(x)的图象关于点(a,b)对称 f(a+x)+f(a-x)=2b 2b-f(x)=f(2a-x);若函数y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点成中心对称.跟踪训练2 (1)函数f(x)=ex-2-e2-x的图象关于( )A.点(-2,0)对称 B.直线x=-2对称C.点(2,0)对称 D.直线x=2对称答案 C解析 ∵f(x)=ex-2-e2-x,∴f(2+x)=e2+x-2-e2-(2+x)=ex-e-x,f(2-x)=e2-x-2-e2-(2-x)=e-x-ex,所以f(2+x)+f(2-x)=0,因此,函数f(x)的图象关于点(2,0)对称.(2)(2023·郑州模拟)若函数f(x)满足f(2-x)+f(x)=-2,则下列函数中为奇函数的是( )A.f(x-1)-1 B.f(x-1)+1C.f(x+1)-1 D.f(x+1)+1答案 D解析 因为f(2-x)+f(x)=-2,所以f(x)关于点(1,-1)对称,所以将f(x)向左平移1个单位,再向上平移1个单位得到函数y=f(x+1)+1,该函数的对称中心为(0,0),故y=f(x+1)+1为奇函数.题型三 两个函数图象的对称例3 已知函数y=f(x)是定义域为R的函数,则函数y=f(x+2)的图象与y=f(4-x)的图象( )A.关于直线x=1对称B.关于直线x=3对称C.关于直线y=3对称D.关于点(3,0)对称答案 A解析 设P(x0,y0)为y=f(x+2)图象上任意一点,则y0=f(x0+2)=f(4-(2-x0)),所以点Q(2-x0,y0)在函数y=f(4-x)的图象上,而P(x0,y0)与Q(2-x0,y0)关于直线x=1对称,所以函数y=f(x+2)的图象与y=f(4-x)的图象关于直线x=1对称.思维升华 函数y=f(a+x)的图象与函数y=f(b-x)的图象关于直线x=对称.跟踪训练3 设函数y=f(x)的定义域为R,则函数y=f(x-1)的图象与y=f(1-x)的图象( )A.关于y轴对称B.关于x轴对称C.关于直线x=1对称D.关于直线y=1对称答案 C解析 A选项,函数y=f(x-1)关于y轴对称的函数为y=f(-x-1)≠f(1-x),故A错误;B选项,函数y=f(x-1)关于x轴对称的函数为y=-f(x-1)≠f(1-x),故B错误;C选项,函数y=f(x-1)关于直线x=1对称的函数为y=f(2-x-1)=f(1-x),故C正确;D选项,函数y=f(x-1)关于直线y=1对称的函数为y=2-f(x-1)≠f(1-x),故D错误.课时精练1.已知函数y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点( )A.(-1,2) B.(1,2)C.(-1,-2) D.(-2,1)答案 A解析 函数y=f(x)与y=-f(-x)的图象关于原点对称,又y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点(-1,2).2.已知函数f(x)=2|x-a|的图象关于直线x=2对称,则a等于( )A.1 B.2 C.0 D.-2答案 B解析 函数y=2|x|的图象关于y轴对称,将函数y=2|x|的图象向右平移2个单位可得函数y=2|x-2|的图象,所以函数y=2|x-2|的图象关于直线x=2对称,故a=2.3.已知奇函数f(x)满足f(5)=1,且f(x-2)的图象关于x=3对称,则f(2 025)等于( )A.-1 B.1 C.0 D.3答案 B解析 ∵函数f(x-2)的图象关于直线x=3对称,∴f(x)的图象关于直线x=1对称,∴f(-x)=f(x+2),∵f(x)为奇函数,∴f(-x)=f(2+x)=-f(x),∴f(x+4)=f(x),∴f(x)是周期为4的周期函数,∴f(2 025)=f(1)=f(5)=1.4.(2023·郑州质检)若函数f(x)满足f(-x)+f(x)=2,则下列函数是奇函数的是( )A.f(x-1)-1 B.f(x+1)+1C.f(x)-1 D.f(x)+1答案 C解析 ∵f(-x)+f(x)=2,∴f(x)的图象关于(0,1)对称,将y=f(x)的图象向下平移1个单位得函数y=f(x)-1的图象,该图象关于(0,0)对称,∴y=f(x)-1为奇函数.5.已知函数f(x+2)是R上的偶函数,且f(x)在[2,+∞)上恒有<0(x1≠x2),则不等式f(ln x)>f(1)的解集为( )A.(-∞,e)∪(e3,+∞) B.(1,e2)C.(e,e3) D.(e,+∞)答案 C解析 因为函数f(x+2)是R上的偶函数,所以f(x)的图象关于直线x=2对称,在[2,+∞)上恒有<0(x1≠x2),当x1f(x2),所以f(x)在[2,+∞)上单调递减,f(x)在(-∞,2)上单调递增,不等式f(ln x)>f(1)需满足|ln x-2|<|1-2| 16.(多选)定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,则下列关于f(x)的结论中正确的有( )A.f(x)的图象关于直线x=1对称B.f(x)在[0,1]上单调递增C.f(x)在[1,2]上单调递减D.f(2)=f(0)答案 AD解析 根据题意,若f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),即f(x+2)=f(x),f(x)是周期为2的周期函数,则有f(2)=f(0),故D正确;若f(x+2)=f(x),且函数f(x)为偶函数,则有f(x+2)=f(-x),则函数f(x)的图象关于直线x=1对称,故A正确;f(x)在[-1,0]上单调递增,且函数f(x)为偶函数,则函数f(x)在[0,1]上单调递减,故B错误;f(x)在[-1,0]上单调递增,且f(x)是周期为2的周期函数,则函数f(x)在[1,2]上单调递增,故C错误.7.与f(x)=ex关于直线x=1对称的函数是________.答案 y=e2-x解析 f(x)=ex关于直线x=1对称的是f(2-x)=e2-x,即y=e2-x.8.(2022·江苏七市联考)写出一个同时具有性质①②③的函数f(x)=________.①f(x)是定义域为R的奇函数;②f(1+x)=f(1-x);③f(1)=2.答案 2sin x(答案不唯一)解析 由①②③可知函数f(x)是对称轴为x=1,定义域为R的奇函数,且f(1)=2,可写出满足条件的函数f(x)=2sin x.9.已知函数f(x)=是奇函数.(1)求a的值,并解关于x的不等式f(x)>;(2)求函数g(x)=图象的对称中心.解 (1)对任意的x∈R,2x+2-x>0,故函数f(x)的定义域为R,又因为函数f(x)=为奇函数,则f(0)==0,解得a=1,所以f(x)=,下面验证函数f(x)=为奇函数,f(-x)==-f(x),故函数f(x)=为奇函数,由f(x)===>,得2·4x>4,即22x+1>22,所以2x+1>2,解得x>,因此不等式f(x)>的解集为.(2)g(x)==,则g(-x)=,所以g(x)+g(-x)==2,因此函数g(x)=图象的对称中心为(0,1).10.函数y=f(x)的图象关于点P(a,b)成中心对称的充要条件是函数y=f(x+a)-b为奇函数.(1)若f(x)=x3-3x2.求此函数图象的对称中心;(2)类比上述推广结论,写出“函数y=f(x)的图象关于y轴成轴对称的充要条件是函数y=f(x)为偶函数”的一个推广结论.解 (1)设函数f(x)=x3-3x2图象的对称中心为P(a,b),g(x)=f(x+a)-b,则g(x)为奇函数,故g(-x)=-g(x),故f(-x+a)-b=-f(x+a)+b,即f(-x+a)+f(x+a)=2b,即[(-x+a)3-3(-x+a)2]+[(x+a)3-3(x+a)2]=2b.整理得(3a-3)x2+a3-3a2-b=0,故解得所以函数f(x)=x3-3x2图象的对称中心为(1,-2).(2)推论:函数y=f(x)的图象关于直线x=a成轴对称的充要条件是函数y=f(x+a)为偶函数.11.(多选)已知函数y=f(x),x∈R,下列4个命题中是真命题的是( )A.若y=f(x+1)为偶函数,则f(x)的图象自身关于直线x=1对称B.函数f(x-1)与f(1-x)的图象关于直线x=1对称C.若f(x)为奇函数,且f(x+2)=-f(x),则f(x)的图象自身关于点(1,0)对称D.若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象自身关于直线x=1对称答案 ABD解析 对于A,若y=f(x+1)为偶函数,其函数图象关于直线x=0对称,故y=f(x+1)的图象向右平移1个单位得f(x)的图象,故f(x)的图象自身关于直线x=1对称,正确;对于B,将f(x)的图象向右平移1个单位,可得f(x-1)的图象,将f(x)的图象关于y轴对称得f(-x)的图象,然后将其图象向右平移1个单位得f(1-x)的图象,故f(x-1)与f(1-x)的图象关于直线x=1对称,故正确;对于C,若f(x)为奇函数,且f(x+2)=-f(x)=f(-x),故f(x+1)=f(1-x),所以f(x)的图象自身关于直线x=1对称,故不正确;对于D,因为f(x)为奇函数,且f(x)=f(-x-2),故f(x+2)=-f(x)=f(-x),所以f(x)的图象自身关于直线x=1对称,故正确.12.已知函数f(x)满足f(x+2)是偶函数,若函数y=|x2-4x-5|与函数y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xn,yn),则横坐标之和x1+x2+…+xn=________.答案 2n解析 因为f(x+2)是偶函数,所以函数f(x+2)的图象关于直线x=0对称,又因为函数f(x+2)向右平移2个单位得到函数f(x)的图象,所以函数f(x)的图象关于直线x=2对称,因为y=|x2-4x-5|=|(x-2)2-9|,所以函数y=|x2-4x-5|的图象也关于直线x=2对称,所以x1+x2+…+xn=·4=2n.13.已知函数f(x)=则此函数图象上关于原点对称的点有( )A.0对 B.1对 C.2对 D.3对答案 B解析 作出函数y=f(x)的图象,如图所示,再作出-y=f(-x),记为曲线C,由图象可知,满足条件的对称点只有一对,图中的A,B就是符合题意的点.14.已知函数f(x)=则满足f(2+log4x)>f(1-log4x)的x的取值范围是( )A. B.C.(0,2) D.(2,+∞)答案 A解析 当x≤2时,f(x)=x-2-4=22-x-4=2|x-2|-4,当x>2时,f(x)=2x-2-4=2|x-2|-4,所以对任意的x∈R,f(x)=2|x-2|-4,则f(4-x)=2|4-x-2|-4=2|x-2|-4=f(x),所以函数f(x)的图象关于直线x=2对称,因为函数f(x)在[2,+∞)上单调递增,由f(2+log4x)>f(1-log4x)可得|2+log4x-2|>|1-log4x-2|,即|log4x|>|1+log4x|,不等式|log4x|>|1+log4x|两边平方得log4x<-,解得0 展开更多...... 收起↑ 资源列表 2024届高考数学一轮(新人教B版)第二章 2.4 函数的对称性 学案(含解析).docx 2024届高考数学一轮(新人教B版)第二章 2.4 函数的对称性 课件(61张PPT).pptx