小升初必考专题:分数、百分数应用题(专项训练)-小学数学六年级下册人教版(含解析)

资源下载
  1. 二一教育资源

小升初必考专题:分数、百分数应用题(专项训练)-小学数学六年级下册人教版(含解析)

资源简介

中小学教育资源及组卷应用平台
小升初必考专题:分数、百分数应用题(专项训练)-小学数学六年级下册人教版
一、选择题
1.一根钢管,截去部分是剩下部分的,剩下部分是原钢管长的( )%.
A.75 B.400 C.80 D.25
2.把一根长5米的铁丝平均分成8段,每段占全长的( ),每段的长度是( ).
A. B.米 C. D.米
3.一辆汽车小时行了60km。照这样的速度,这辆汽车2小时可行(  )km。
A.200 B.72 C.120 D.260
4.一段铁丝长12米,第一次截去全长的,第二次截去米,最后剩下(  )。
A.0米 B.11米 C.米 D.米
5.甲数的与乙数的相等,甲数的25%与丙数的20%相等.比较甲、乙、丙三个数(都大于0)的大小,下列结果正确的是哪一个?(  )
A.甲>乙>丙 B.丙>乙>甲 C.甲>丙>乙 D.丙>甲>乙
6.有一根1米长的木条,第一次据掉它的,第二次据掉余下的,第三次据掉余下的,……,这样下去,最后一次据掉余下的,这根木条最后剩( )
A.米 B.米 C.米 D.米
二、填空题
7.把m长的铁丝,平均分成8段,每段占全长的( ),每段长( )m。
8.根据下图列出乘法算式( )。
9.“苹果的价格比雪梨贵”是把( )的价格看作单位“1”,苹果的价格相当于雪梨的( ),也就是苹果的价格与雪梨的价格的比是( ),雪梨的价格比苹果便宜( )%。
10.明明爸爸领到一笔8000元的奖金。他拿出其中为明明存了教育储蓄,定期三年,年利率是5.22%,到期后,爸爸可以获得利息( )元。
11.的分数单位是( ),再添上( )个这样的分数单位就是最小的质数。
12.定义新运算:a◎b=3a+4b,若x◎7=37,那么◎(x◎4)=( )。
13.将如图所示的三角形沿虚线折叠,得到如图所示的多边形,这个多边形的面积是原三角形面积的,已知图中阴影部分的面积为6平方厘米,那么原三角形的面积是( )平方厘米。
14.5G技术具有更高速率、更大连接、更低延时的特性。用5G下载的时间是4G的,若用4G下载一部电影需要10分钟,则用5G下载只需( )秒。
三、计算题
15.直接写得数。
14.3-6.8= 4÷0.8= 0.45×1000=
9 786-298= 3.14×8= 25×0.7×4= 0.35×99+0.35=
16.下面各题怎样简便就怎样算。
① ② ③
④ ⑤ ⑥
17.求未知数的值。
4.2×(x-5)=63 16∶x=0.75∶ 5x-1.6=
四、解答题
18.某校六年级举行语文和数学竞赛,参加竞赛的人数占全年级总人数的20%,参加语文竞赛的人数占竞赛总人数的,参加数学竞赛的人数占竞赛总人数的,两项竞赛都参加的有14人,该校六年级共有多少名学生?
19.一辆汽车从甲地到乙地,已经行了全程的,离中点还有50千米,求甲、乙两地的距离。
20.某工厂有甲、乙两个车间,甲、乙两个车间职工人数的比是4∶3,把甲车间职工的调入乙车间,这时乙车间职工比甲车间多2人,原来甲、乙两车间各有职工多少人?
21.希望小学六年级开设了书法组、创客机器人组、合唱队三项课外活动。参加书法组活动的占全年级人数的;参加创客机器人组活动的占全年级人数的45%,比参加书法组的多8人;有32人参加了合唱队。
(1)六年级共有学生多少人?
(2)淘气说:“一定有人参加了不止一项活动。”妙想说:“不一定。”你认为谁说得对?为什么?
22.2020年2月,在抗击新冠肺炎疫情时期,我国政府建设了雷神山和火神山医院。雷神山医院的总建筑面积约为60000平方米,分为医疗隔离区和医护住宿区两部分,其中医疗隔离区的面积约占总面积的。雷神山医院医护住宿区的面积约是多少平方米?
23.一个密封的长方体容器装了一些水。当横着放入一个圆柱体铁块时,恰好完全浸没在水中,水深2厘米(如下左图)。如果把这个容器如下右图放置,圆柱体铁块的刚好露出水面,且水深5.5厘米。
(1)当把这个容器如下右图放置时,占地面积是多少?
(2)这个圆柱体铁块的体积是多少立方厘米?
24.实验小学在“童心向党,喜迎二十”征文活动中,六年级有80人获一、二、三等奖。其中获三等奖的人数占六年级获奖人数的,获一、二等奖的人数比是1∶4,六年级有多少人获一等奖?
参考答案:
1.C
【详解】本题考查百分数的应用.要弄清楚:截去部分的长度+剩下部分的长度=钢管的全长,根据这个等量关系可以解决.
解:假设钢管剩下部分的长度是x,根据题意得:x÷(x+x)=80%
2.AD
【详解】本题主要考查分数与除法的意义.首先根据分数的意义得出每段占全长的几分之几,再根据除法的意义算出每段的长度是多少米.
先根据分数的意义把这根铁丝看做单位“1”,把它平均分成8段,每段占全长的,然后根据除法的意义计算每段的长度:5÷8=(米).
3.A
【详解】略
4.C
【详解】略
5.D
【分析】由题意可得:甲数×=乙数×,甲数×25%=丙数×20%,则可以求出三个数的比,继而确定出三个数的大小关系.
【详解】因为甲数×=乙数×,甲数×25%=丙数×20%,
甲数:乙数=:=5:4;
甲数:丙数=20%:25%=4:5;
乙数=甲数,丙数=甲数,
所以丙数>甲数>乙数;
故选D.
6.B
【详解】求一个数的几分之几用乘法,根据题意,剩下的长度为
1×(1-)×(1-)×(1-)×(1-)×(1-)×(1-)
=1××××××=(米),故选B
7.
【分析】根据分数的意义,结合题意,直接填出第一空;用总长m除以段数8,求出每段的长度。
【详解】÷8=(m)
所以每段占全长的,每段长m。
【点睛】本题考查了分数除法,有一定运算能力是解题的关键。
8.×=
【分析】先把长方形平均分成3份,涂色部分占1份,就是,再把这1份平均分成了3份,深色部分占两份就是的,即×,由此求解。
【详解】×=
【点睛】解决本题主要根据分数的意义以及分数乘法的意义进行解答。
9. 雪梨 5∶4 20
【分析】一般“比”字之后为单位“1”,则把雪梨的价格看作单位“1”,假设雪梨的价格是1,苹果的价格比雪梨贵,则苹果的价格是1×(1+),用苹果的价格比雪梨的价格,根据比的基本性质化简比即可;用苹果的价格减去雪梨的价格,然后再除以苹果的价格即可解答。
【详解】设雪梨的价格为1,
苹果的价格为:
1×(1+)
=1×

∶1
=(×4)∶(1×4)
=5∶4
(-1)÷
=÷

=20%
则把雪梨的价格看作单位“1”,苹果的价格相当于雪梨的,也就是苹果的价格与雪梨的价格的比是5∶4,雪梨的价格比苹果便宜20%。
【点睛】本题考查一个数比另一个数少百分之几,明确单位“1”是解题的关键。
10.626.4
【分析】根据题意,求出爸爸存教育储蓄的钱数,用8000×元;再根据:利息=本金×利率×时间,代入数据,即可求出到期可获利息多少元。
【详解】8000××5.22%×3
=4000×5.22%×3
=208.8×3
=626.4(元)
【点睛】本题考查求一个数的几分之几是多少,以及利息的计算。
11. 9
【分析】根据分数单位的意义,一个分数的分母是几,它的分数单位就是几分之一;最小的质数是2,用2减去,分子就是所要添上这样的分数单位个数。
【详解】的分数单位是
最小质数是2
2-=
要添上9个这样的分数单位就是最小的质数。
【点睛】本题考查分数单位意义,以及最小质数。
12.101
【分析】根据所给出的等式:a◎b=3a+4b,若x◎7=37,找到新的运算法则,由此方法计算x◎7=37求出x的值,再求出◎(x◎4)的值即可。
【详解】解:x◎7=37
3x+4×7=37
3x=9
x=3
◎(x◎4)
=◎(3◎4)
=◎(3×3+4×4)
=◎25
=×3+4×25
=1+100
=101
【点睛】定义新运算:这种新运算其实只是变了形的求式子值的问题,只要弄清新的运算法则,然后再分步求值就可得出答案。
13.24
【分析】多边形的面积是原三角形面积的,所以多边形面积比三角形面积少(1-),即空白部分面积是三角形面积的,则阴影部分面积为三角形面积的-=,阴影部分的面积为6平方厘米所对应的是,用除法就可以求出原来三角形的面积。
【详解】1-=
-=
6÷=24(平方厘米)
则求原来三角形的面积是24平方厘米。
【点睛】此题考查的是简单图形的折叠问题,解决本题关键是明确阴影部分面积占三角形面积的几分之几。
14.6
【分析】把用4G下载的时间看作单位“1”,根据分数乘法的意义,用10分钟乘,就是用5G下载需要的时间。
【详解】10分=600秒
600×=6(秒)
【点睛】此题是考查分数乘法的意义及应用。求一个数的几分之几是多少,用这个数乘分率。
15.7.5;;;5;450;
45;488;25.12;70;35
【详解】略
16.①;②41.7;③43.6;
④55;⑤11000;⑥
【分析】①先算小括号里面的加法,再算中括号里面的乘法,最后计算中括号外面的除法;
②利用除法的性质把原式变为:,可以简算;
③根据积的变化规律,把原式变为:,再利用乘法分配律可以简算;
④中括号里面利用乘法分配律计算出结果,再计算中括号外面的除法;
⑤把101看作是100与1的和,利用乘法分配律和减法的性质,把原式变为:100×110+110-110,可以简算;
⑥先算小括号里面的减法,再算中括号里面的除法,最后计算中括号外面的除法。
【详解】①








=9.1+32.6
=41.7



=1×43.6
=43.6



=1210÷22
=55


=100×110+110-110
=11000+110-110
=11000







17.x=20;x=40;x=0.5
【分析】根据等式的性质,方程两边同时除以4.2,再同时加5;
先根据比例的基本性质将比例化成方程,再根据等式的性质,方程两边同时除以0.75;
根据等式的性质,方程两边同时加1.6,再同时除以5。
【详解】4.2×(x-5)=63
解:4.2×(x-5)÷4.2=63÷4.2
x-5=15
x-5+5=15+5
x=20
16∶x=0.75∶
解:0.75x=×16
0.75x=30
0.75x÷0.75=30÷0.75
x=40
5x-1.6=
解:5x-1.6+1.6=+1.6
5x=2.5
5x÷5=2.5÷5
x=0.5
18.300名
【分析】先用(+-1)求出两项竞赛都参加的14人占参加竞赛人数的分率,再用14除以这个分率求出参加竞赛的人数,最后用参加竞赛的人数除以20%就是六年级学生总数。
【详解】14÷(+-1)
=14÷
=60(名)
60÷20%=300(名)
答:该校六年级共有300名学生。
【点睛】本题考查了利用分数及百分数的混合运算解决问题,关键是求出14人占参加竞赛学生的分率。
19.400千米
【分析】把甲、乙两地的全程看作单位“1”,已经行了全程的,离中点还有50千米,即离全程的还有50千米,也就是说50千米占全程的(-),单位“1”未知,用除法计算,求出甲、乙两地的距离。
【详解】50÷(-)
=50÷(-)
=50÷
=50×8
=400(千米)
答:甲、乙两地的距离为400千米。
【点睛】本题考查分数除法的应用,找出单位“1”,单位“1”未知,用具体的数量除以它对应分率,求出单位“1”的量。
20.甲:24人;乙:18人
【分析】结合题意,可把甲乙两个车间的职工总人数看作单位“1”,则甲车间职工人数占总人数的,乙车间职工人数占总人数的;因为把甲车间职工的调入乙车间,甲车间职工人数的就是:×=;
此时,甲车间职工人数占总人数的(-),乙车间职工人数占总人数的(+);又已知乙车间职工比甲车间多2人,则2人对应的分率应是乙车间职工人数占比与甲车间职工人数占比之差,根据已知一个数的几分之几是多少,求这个数用除法计算,可列式为:2÷[(+)-(-)],求得的结果是甲乙两个车间职工总人数,再分别乘原来甲乙车间职工人数占总人数的分率,可得到原来甲、乙两车间各有职工多少人。
【详解】4÷(4+3)
=4÷7

3÷(4+3)
=3÷7

×=
2÷[(+)-(-)]
=2÷[-]
=2÷
=42(人)
42×=24(人)
42×=18(人)
答:原来甲车间有职工24人,乙车间有职工18人。
【点睛】综合考查了有关比的应用、分数除法的应用,其中,分数除法列式前,要先考虑单位“1”,以及把具体数量与分率相对应。
21.(1)160人
(2)淘气说得对;因为参加三项活动的学生人数比六年级的学生总人数要多。
【分析】(1)根据条件可知,参加创客机器人组的人数比参加书法组的人数多8人,多全年级人数的45%-=5%,用8除以5%即可算出全年级人数。
(2)分别算出参加书法组活动人数、参加创客机器人组活动人数,然后把参加书法组活动、参加创客机器人组活动、参加合唱队活动的人数加起来与全年级人数相比较即可。
【详解】(1)8÷(45%-)
=8÷5%
=160(人)
答:六年级共有学生160人。
(2)书法组人数:160×=64(人)
创客机器人组人数:64+8=72(人)
参加三项活动人数:64+72+32=168(人)
因为全年级总人数为160人,168>160,所以有人不止参加了一项活动。
答:淘气说得对,因为参加三项活动的学生人数比六年级的学生总人数要多。
【点睛】解答此题,首先找准单位“1”是关键,熟练运用部分量÷部分量占的比例=总体这一思路进行解题。
22.9000平方米
【分析】把雷神山医院的总建筑面积看作单位“1”,用单位“1”减去医疗隔离区的面积占总面积分率即可求出医护住宿区占总面积的分率,然后根据求一个数的几分之几是多少,用乘法解答即可。
【详解】60000×(1-)
=60000×
=9000(平方米)
答:雷神山医院医护住宿区的面积约是9000平方米。
【点睛】本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
23.(1)20平方厘米
(2)40立方厘米
【分析】(1)占地面积指的是底面积,根据长方形面积=长×宽,列式解答即可。
(2)圆柱露出水面的体积=第一个图长×宽×水深-第二个图长×宽×水深,将圆柱体积看作单位“1”,露出水面的体积÷对应分率=圆柱体积,据此列式解答。
【详解】(1)5×4=20(平方厘米)
答:占地面积是20平方厘米。
(2)12×5×2-5×4×5.5
=120-110
=10(立方厘米)
10÷=40(立方厘米)
答:这个圆柱体铁块的体积是40立方厘米。
【点睛】关键是掌握并灵活运用长方体表面积和体积公式,理解分数除法的意义。
24.6人
【分析】把六年级获奖的总人数看作单位“1”,获三等奖的人数占六年级获奖总人数的,则获一、二等奖的人数占六年级获奖总人数的(1-),用分数乘法求出获一、二等奖的人数,获一等奖的人数占获一、二等奖总人数的,最后用乘法求出获一等奖的人数,据此解答。
【详解】80×(1-)×
=80××
=30×
=6(人)
答:六年级有6人获一等奖。
【点睛】求出获得一、二等奖的总人数,并掌握按比例分配问题的解题方法是解答题目的关键。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览