资源简介 中小学教育资源及组卷应用平台专题十三 函数的模型与应用知识归纳一、三种函数模型的性质函数性质在上的增减性 单调递增 单调递增 单调递增增长速度 越来越快 越来越慢 相对平稳图象的变化 随x的增大逐渐表现为与y轴平行 随x的增大逐渐表现为与x轴平行 随n值变化而各有不同二、几种常见的函数模型:函数模型 函数解析式一次函数模型 ,为常数且反比例函数模型 ,为常数且二次函数模型 ,,为常数且指数函数模型 ,,为常数,,,对数函数模型 ,,为常数,,,幂函数模型 ,为常数,方法技巧与总结解函数应用问题的步骤:1.审题:弄清题意,识别条件与结论,弄清数量关系,初步选择数学模型;2.建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用已有知识建立相应的数学模型;3.解模:求解数学模型,得出结论;4.还原:将数学问题还原为实际问题.典例分析题型一、二次函数模型,分段函数模型例1-1.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入是单位产量的函数:,则总利润的最大值是______万元.(总利润=总收入-成本)例1-2.我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于,已知一驾驶员某次饮酒后体内每血液中的酒精含量(单位:)与时间(单位:)的关系是:当时,;当时,,那么该驾驶员在饮酒后至少要经过__________才可驾车.例1-3.党的二十大报告将“完成脱贫攻坚 全面建成小康社会的历史任务,实现第一个百年奋斗目标”作为十年来对党和人民事业具有重大现实意义和深远历史意义的三件大事之一.某企业积极响应国家的号召,对某经济欠发达地区实施帮扶,投资生产A产品,经过市场调研,生产A产品的固定成本为200万元,每生产万件,需可变成本万元,当产量不足50万件时,;当产量不小于50万件时,.每件A产品的售价为100元,通过市场分析,生产的A产品可以全部销售完,则生产该产品能获得的最大利润为__________万元.例1-4.折纸是我国民间的一种传统手工艺术,明德小学在课后延时服务中聘请了民间艺术传人给同学们教授折纸.课堂上,老师给每位同学发了一张长为10cm,宽为8cm的矩形纸片,要求大家将纸片沿一条直线折叠.若折痕(线段)将纸片分为面积比为1:3的两部分,则折痕长度的取值范围是___________cm.例1-5.如图为某小区七人足球场的平面示意图,为球门,在某次小区居民友谊比赛中,队员甲在中线上距离边线米的点处接球,此时,假设甲沿着平行边线的方向向前带球,并准备在点处射门,为获得最佳的射门角度(即最大),则射门时甲离上方端线的距离为( )A. B. C. D.题型二、对勾函数模型例2-1.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10 km处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A.5 km处 B.4 km处 C.3 km处 D.2 km处例2-2.某校食堂需定期购买大米.已知该食堂每天需用大米0.6t,每吨大米的价格为6000元,大米的保管费用z(单位:元)与购买天数x(单位:天)的关系为(),每次购买大米需支付其他固定费用900元.若要使食堂平均每天所支付的总费用最少,则食堂应______天购买一次大米.例2-3.某人准备购置一块占地1800平方米的矩形地块,中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图阴影部分所示),大棚占地面积为S平方米,其中a∶b=1∶2,若要使S最大,则y=________.例2-4.砖雕是江南古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形截去同心扇形所得部分.已知扇环周长,大扇形半径,设小扇形半径,弧度,则①关于x的函数关系式_________.②若雕刻费用关于x的解析式为,则砖雕面积与雕刻费用之比的最大值为________.题型三、指数型函数、对数型函数、幂函数模型例3-1.2020年底,国务院扶贫办确定的贫困县全部脱贫摘帽,脱贫攻坚取得重大胜利!为进一步巩固脱贫攻坚成果,持续实施乡村振兴战略,某企业响应政府号召,积极参与帮扶活动.该企业2021年初有资金150万元,资金的年平均增长率固定,每三年政府将补贴10万元.若要实现2024年初的资金达到270万元的目标,资金的年平均增长率应为(参考值:)( )A.10% B.20% C.22% D.32%例3-2.冈珀茨模型是由冈珀茨(Gompertz)提出的,可作为动物种群数量变化的模型,也可用于描述种群的消亡规律.已知某珍稀物种年后的种群数量近似满足冈珀茨模型(,当时表示2022年初的种群数量),经过年后,当该物种的种群数量不足2022年初种群数量的时,即将有濒临灭绝的危险,则的最小值为(参考数据:)( )A.10 B.11 C.12 D.13例3-3.(美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的,两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入(千万元)与投入的资金(千万元)成正比,已知投入1千万元,公司获得毛收入0.25千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图象如图所示.现在公司准备投入40千万元资金同时生产,两种芯片,则可以获得的最大利润是______千万元.(毛收入=营业收入-营业成本)例3-4.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为,其中表示每一轮优化时使用的学习率,表示初始学习率,表示衰减系数,表示训练迭代轮数,表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含)所需的训练迭代轮数至少为( )(参考数据:,)A.11 B.22 C.227 D.481例3-5.(多选)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y(微克)与时间t(小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则( )A.B.注射一次治疗该病的有效时间长度为6小时C.注射该药物小时后每毫升血液中的含药量为0.4微克D.注射一次治疗该病的有效时间长度为时例3-6.建筑学中必须要对组合墙的平均隔声量进行设计.组合墙是指带有门或窗等的隔墙,假定组合墙上有门、窗及孔洞等几种不同的部件,各种部件的面积分别为,,…,(单位:m2),其相应的透射系数分别为,,…,,则组合墙的实际隔声量应由各部分的透射系数的平均值确定:,于是组合墙的实际隔声量(单位:dB)为.已知某墙的透射系数为,面积为20 m2,在墙上有一门,其透射系数为,面积为,则组合墙的平均隔声量约为_______dB.(注:)例3-7.(多选)某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常,排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(单位:ppm)与排气时间t(单位:分)之间满足函数关系y=f(t),其中(R为常数).若空气中一氧化碳浓度不高于0.5 ppm,人就可以安全进入车库了,则下列说法正确的是( )A. B.C.排气12分钟后,人可以安全进入车库D.排气32分钟后,人可以安全进入车库例3-8.“喊泉”是一种地下水的毛细现象,人们在泉口吼叫或发出其他声响时,声波传入泉洞内的储水池,进而产生“共鸣”等物理声学作用,激起水波,形成涌泉.声音越大,涌起的泉水越高.已知听到的声强与参考声强(约为,单位:)之比的常用对数称作声强的声强级,记作(单位:贝尔),即,取贝尔的10倍作为响度的常用单位,简称为分贝.已知某处“喊泉”的声音响度(单位:分贝)与喷出的泉水高度满足关系式,现知同学大喝一声激起的涌泉最高高度为,若同学大喝一声的声强大约相当于10个同学同时大喝一声的声强,则同学大喝一声激起的涌泉最高高度约为______dm.例3-9.2023年10月31日,长征五号B遥四运载火箭带着中华民族千百年来探索浩瀚宇宙的梦想,将中国空间站梦天实验舱准确送入预定轨道在不考虑空气阻力的条件下,若火箭的最大速度v(单位:)和燃料的质量M(单位:t)、火箭(除燃料外)的质量m(单位:t)的关系满足,M,m,v之间的关系如图所示,则下列结论正确的是( )A.当时, B.当时,C.当时, D.当时,例3-10.在如今这个5G时代,6G研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G速率有望达到1Tbps,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G数据传输速率有望比5G快100倍,时延达到亚毫秒级水平.香农公式是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率取决于信道宽带,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.若不改变宽带,而将信噪比从11提升至499,则最大信息传递率会提升到原来的_________倍.(结果保留一位小数)例3-11.为落实党的二十大提出的“加快建设农业强国,扎实推动乡村振兴”的目标,银行拟在乡村开展小额贷款业务.根据调查的数据,建立了实际还款比例关于贷款人的年收入(单位:万元)的Logistic,模型:,已知当贷款大的年收入为8万元时,其实际还款比例为50%.若银行希望实际还款比例为40%,则贷款人的年收入为( )(精确到0.01万元,参考数据:,)A.4.65万元 B.5.63万元 C.6.40万元 D.10.00万元例3-12.金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度与其采摘后时间(天)满足的函数解析式为,.若采摘后1天,金针菇失去的新鲜度为40%,采摘后3天,金针菇失去的新鲜度为80%.那么若不及时处理,采摘下来的金针菇在多长时间后开始失去全部新鲜度(已知,结果取一位小数)( )A.4.0天 B.4.3天 C.4.7天 D.5.1天题型四、已知函数模型的实际问题例4-1.某公司的收入由保险业务收入和理财业务收入两部分组成.该公司年总收入为亿元,其中保险业务收入为亿元,理财业务收入为亿元.该公司经营状态良好、收入稳定,预计每年总收入比前一年增加亿元.因越来越多的人开始注重理财,公司理财业务发展迅速.要求从年起每年通过理财业务的收入是前一年的倍,若要使得该公司年的保险业务收入不高于当年总收入的,则的值至少为( )A. B. C. D.例4-2.中国是茶的故乡,也是茶文化的发源地,茶文化是把茶、赏茶、闻茶、饮茶、品茶等习惯与中国的文化内涵相结合而形成的一种文化现象,具有鲜明的中国文化特征.其中沏茶、饮茶对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是,空气的温度是,经过t分钟后物体的温度为θ℃,满足公式.现有一壶水温为92℃的热水用来沏茶,由经验可知茶温为52℃时口感最佳,若空气的温度为12℃,那从沏茶开始,大约需要( )分钟饮用口感最佳.(参考数据;,)A.2.57 B.2.77 C.2.89 D.3.26例4-3.医学上常用基本传染数来衡量传染病的传染性强弱,其中,)表示天内的累计病例数.据统计某地发现首例型传染性病例,在内累计病例数达到例,取,根据上面的信息可以计算出型传染病的基本传染数.已知型传染病变异株的基本传染数(表示不超过的最大整数),平均感染周期为天(初始感染者传染个人为第一轮传染,经过一个周期后这个人每人再传染个人为第二轮传染,以此类推),则感染人数由个初始感染者增加到人大约需要的天数为( )(参考数据:)A.63 B.70 C.77 D.84例4-4.等额分付资本回收是指起初投资P,在利率i,回收周期数n为定值的情况下,每期期末取出的资金A为多少时,才能在第n期期末把全部本利取出,即全部本利回收,其计算公式为:.某农业种植公司投资33万元购买一大型农机设备,期望投资收益年利率为10%,若每年年底回笼资金8.25万元,则该公司将至少在( )年内能全部收回本利和.(,,)A.4 B.5 C.6 D.7例4-5.某全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为h(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),若,则S占地球表面积的百分比约为( )A.26% B.34% C.42% D.50%题型五、构造函数模型的实际问题例5-1.为了提高员工的工作积极性,某外贸公司想修订新的“员工激励计划”新的计划有以下几点需求:①奖金随着销售业绩的提高而提高;②销售业绩增加时,奖金增加的幅度逐渐上升;③必须和原来的计划接轨:销售业绩在10万元或以内时奖金为0,超过10万元则开始计算奖金,销售业绩为20万元时奖金为1千元.设业绩为x()万元时奖金为f(x)千元,下面给出三个函数模型:①;②;③.其中.请选择合适的函数模型,并计算:业绩为100万元时奖金为___________千元.例5-2.现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取粒红豆,乙每次取粒白豆,同时进行,当红豆取完时,白豆还剩粒;第二轮,甲每次取粒红豆,乙每次取粒白豆,同时进行,当白豆取完时,红豆还剩粒.则红豆和白豆共有________粒.例5-3.2020年是全国决胜脱贫攻坚之年,“一帮一扶”工作组进驻某山区帮助农民脱贫,发现该山区盛产苹果、梨子、猕猴桃,工作人员文明在线上进行直播带货活动,促销方案如下:若一次购买水果总价不低于200元,则顾客少付款m元,每次订单付款成功后,农民会收到支付款的80%,在促销活动中,为了使得农民收入不低于总价的70%,则m的最大值为_________.例5-4.某医院为了提高服务质量,对病员挂号进行了调查,其调查结果为:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后,排队的人数平均每分钟增加M人.假定挂号的速度是每窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟分恰好不会出现排队现象.根据以下信息,若医院承诺5分钟后不出现排队现象,则至少需要同时开放的窗口数为___.例5-5.某地街道呈现东——西、南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点______为发行站,使5个零售点沿街道发行站之间路程的和最短.例5-6.长江流域水库群的修建和联合调度,极大地降低了洪涝灾害风险,发挥了重要的防洪减灾效益.每年洪水来临之际,为保证防洪需要、降低防洪风险,水利部门需要在原有蓄水量的基础联合调度,统一蓄水,用蓄满指数(蓄满指数=×100)来衡量每座水库的水位情况.假设某次联合调度要求如下:(ⅰ)调度后每座水库的蓄满指数仍属于区间;(ⅱ)调度后每座水库的蓄满指数都不能降低;(ⅲ)调度前后,各水库之间的蓄满指数排名不变.记x为调度前某水库的蓄满指数,y为调度后该水库的蓄满指数,给出下面四个y关于x的函数解析式:①;②;③;④.则满足此次联合调度要求的函数解析式的个数为( ).A.1 B.2 C.3 D.421世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台专题十三 函数的模型与应用知识归纳一、三种函数模型的性质函数性质在上的增减性 单调递增 单调递增 单调递增增长速度 越来越快 越来越慢 相对平稳图象的变化 随x的增大逐渐表现为与y轴平行 随x的增大逐渐表现为与x轴平行 随n值变化而各有不同二、几种常见的函数模型:函数模型 函数解析式一次函数模型 ,为常数且反比例函数模型 ,为常数且二次函数模型 ,,为常数且指数函数模型 ,,为常数,,,对数函数模型 ,,为常数,,,幂函数模型 ,为常数,方法技巧与总结解函数应用问题的步骤:1.审题:弄清题意,识别条件与结论,弄清数量关系,初步选择数学模型;2.建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用已有知识建立相应的数学模型;3.解模:求解数学模型,得出结论;4.还原:将数学问题还原为实际问题.典例分析题型一、二次函数模型,分段函数模型例1-1.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入是单位产量的函数:,则总利润的最大值是______万元.(总利润=总收入-成本)【答案】250【解析】根据题意得,所以当时,总利润取得最大值250万元,例1-2.我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于,已知一驾驶员某次饮酒后体内每血液中的酒精含量(单位:)与时间(单位:)的关系是:当时,;当时,,那么该驾驶员在饮酒后至少要经过__________才可驾车.【答案】【解析】当时,,当时,函数有最大值,所以当时,饮酒后体内每血液中的酒精含量小于,当当时,函数单调递减,令,因此饮酒后小时体内每血液中的酒精含量等于,故答案为:例1-3.党的二十大报告将“完成脱贫攻坚 全面建成小康社会的历史任务,实现第一个百年奋斗目标”作为十年来对党和人民事业具有重大现实意义和深远历史意义的三件大事之一.某企业积极响应国家的号召,对某经济欠发达地区实施帮扶,投资生产A产品,经过市场调研,生产A产品的固定成本为200万元,每生产万件,需可变成本万元,当产量不足50万件时,;当产量不小于50万件时,.每件A产品的售价为100元,通过市场分析,生产的A产品可以全部销售完,则生产该产品能获得的最大利润为__________万元.【答案】1000【详解】由题意得,销售收入为万元,当产量不足50万件时,利润;当产量不小于50万件时,利润.所以利润因为当时,,当时,单调递增;当时,单调递减;所以在上单调递增,在上单调递减,则;当时,,当且仅当时取等号.又,故当时,所获利润最大,最大值为1000万元.故答案为:1000例1-4.折纸是我国民间的一种传统手工艺术,明德小学在课后延时服务中聘请了民间艺术传人给同学们教授折纸.课堂上,老师给每位同学发了一张长为10cm,宽为8cm的矩形纸片,要求大家将纸片沿一条直线折叠.若折痕(线段)将纸片分为面积比为1:3的两部分,则折痕长度的取值范围是___________cm.【答案】【解析】由题意得:长方形纸片的面积为,又,,当折痕如下图MN所示时,设,则,解得:,,即,当且仅当时取等号;令 ,则 , 在上单调递减,在上单调递增,又 ,故 ,故 ;当折痕如下图所示时,设,则,解得:,,当时,取得最小值64,当或5时,取得最大值89,则;当折痕如下图所示时,设,则,解得:,则,令,则在上单调递减,在上单调递增,又,故,;综上所述:折痕长的取值范围为,故答案为:例1-5.如图为某小区七人足球场的平面示意图,为球门,在某次小区居民友谊比赛中,队员甲在中线上距离边线米的点处接球,此时,假设甲沿着平行边线的方向向前带球,并准备在点处射门,为获得最佳的射门角度(即最大),则射门时甲离上方端线的距离为( )A. B. C. D.【答案】B【解析】【详解】设,并根据题意作如下示意图,由图和题意得:,,所以,且,所以,又,所以,解得,即,设,,则,,所以在中,有,令,所以,所以,因为,所以,则要使最大,即要取得最小值,即取得最大值,即在取得最大值,令, ,所以的对称轴为:,所以在单调递增,在单调递减,所以当时,取得最大值,即最大,此时,即,所以,所以,即为获得最佳的射门角度(即最大),则射门时甲离上方端线的距离为:.故选:B.题型二、对勾函数模型例2-1.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10 km处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A.5 km处 B.4 km处 C.3 km处 D.2 km处【答案】A【解析】设仓库到车站的距离为x km,由题意得y1=,y2=k2x,其中x>0.由当x=10时,两项费用y1,y2分别是2万元和8万元,可得k1=20,k2=,故y1+y2=x≥2=8,当且仅当x,即x=5时取等号,故选:A.例2-2.某校食堂需定期购买大米.已知该食堂每天需用大米0.6t,每吨大米的价格为6000元,大米的保管费用z(单位:元)与购买天数x(单位:天)的关系为(),每次购买大米需支付其他固定费用900元.若要使食堂平均每天所支付的总费用最少,则食堂应______天购买一次大米.【答案】10【解析】设平均每天所支付的总费用为y元,则,当且仅当,即时取等号,故该食堂10天购买一次大米,才能使平均每天所支付的总费用最少.故答案为:10.例2-3.某人准备购置一块占地1800平方米的矩形地块,中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图阴影部分所示),大棚占地面积为S平方米,其中a∶b=1∶2,若要使S最大,则y=________.【答案】45【解析】由题可得,xy=1800,b=2a,则y=a+b+3=3a+3,∴S=(x-2)a+(x-3)b=(3x-8)a=(3x-8)=1808-3x-y.S=1808-3x-×=1808-(x>0),≤1808-2=1808-240=1568.当且仅当3x=,即x=40时取等号,S取得最大值.此时y==45.所以当x=40,y=45时,S取得最大值.故答案为:45例2-4.砖雕是江南古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形截去同心扇形所得部分.已知扇环周长,大扇形半径,设小扇形半径,弧度,则①关于x的函数关系式_________.②若雕刻费用关于x的解析式为,则砖雕面积与雕刻费用之比的最大值为________.【答案】 ,; 【解析】由题意可知,, ,,所以,,,扇环周长,解得,砖雕面积即为图中环形面积,记为,,即雕刻面积与雕刻费用之比为,则,令,则,,当且仅当时(即)取等号,所以砖雕面积与雕刻费用之比的最大值为.故答案为:,;题型三、指数型函数、对数型函数、幂函数模型例3-1.2020年底,国务院扶贫办确定的贫困县全部脱贫摘帽,脱贫攻坚取得重大胜利!为进一步巩固脱贫攻坚成果,持续实施乡村振兴战略,某企业响应政府号召,积极参与帮扶活动.该企业2021年初有资金150万元,资金的年平均增长率固定,每三年政府将补贴10万元.若要实现2024年初的资金达到270万元的目标,资金的年平均增长率应为(参考值:)( )A.10% B.20% C.22% D.32%【答案】B由题意,设年平均增长率为,则,所以,故年平均增长率为20%.故选:B例3-2.冈珀茨模型是由冈珀茨(Gompertz)提出的,可作为动物种群数量变化的模型,也可用于描述种群的消亡规律.已知某珍稀物种年后的种群数量近似满足冈珀茨模型(,当时表示2022年初的种群数量),经过年后,当该物种的种群数量不足2022年初种群数量的时,即将有濒临灭绝的危险,则的最小值为(参考数据:)( )A.10 B.11 C.12 D.13【答案】D【详解】根据题意得时2022年初种群数量为,所以,化简得,则,又因为,所以的最小值为13.故选:D.例3-3.(美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的,两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入(千万元)与投入的资金(千万元)成正比,已知投入1千万元,公司获得毛收入0.25千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图象如图所示.现在公司准备投入40千万元资金同时生产,两种芯片,则可以获得的最大利润是______千万元.(毛收入=营业收入-营业成本)【答案】9【解析】因为生产芯片的毛收入与投入的资金成正比,所以设,因为当时,,所以,所以,即生产芯片的毛收入(千万元)与投入资金(千万元)的函数关系式为.对于芯片,因为函数的图象过点,,所以,解得,所以,即生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为.设投入,千万元生产芯片,则投入千万元生产芯片,则公司所获利润,,所以当,即时,公司所获利润最大,最大利润为9千万元.故答案为:例3-4.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为,其中表示每一轮优化时使用的学习率,表示初始学习率,表示衰减系数,表示训练迭代轮数,表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含)所需的训练迭代轮数至少为( )(参考数据:,)A.11 B.22 C.227 D.481【答案】D【详解】由于,所以,依题意,则,由得,,,,,所以所需的训练迭代轮数至少为轮.故选:D例3-5.(多选)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y(微克)与时间t(小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则( )A.B.注射一次治疗该病的有效时间长度为6小时C.注射该药物小时后每毫升血液中的含药量为0.4微克D.注射一次治疗该病的有效时间长度为时【答案】AD【详解】由函数图象可知,当时,,即,解得,,故正确,药物刚好起效的时间,当,即,药物刚好失效的时间,解得,故药物有效时长为小时,药物的有效时间不到6个小时,故错误,正确;注射该药物小时后每毫升血液含药量为微克,故错误,故选:.例3-6.建筑学中必须要对组合墙的平均隔声量进行设计.组合墙是指带有门或窗等的隔墙,假定组合墙上有门、窗及孔洞等几种不同的部件,各种部件的面积分别为,,…,(单位:m2),其相应的透射系数分别为,,…,,则组合墙的实际隔声量应由各部分的透射系数的平均值确定:,于是组合墙的实际隔声量(单位:dB)为.已知某墙的透射系数为,面积为20 m2,在墙上有一门,其透射系数为,面积为,则组合墙的平均隔声量约为_______dB.(注:)【答案】【详解】由题意得:组合墙的透射系数的平均值:,故组合墙的平均隔声量为 设 ,则 ,由于,故,故 ,所以,故答案为:例3-7.(多选)某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常,排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(单位:ppm)与排气时间t(单位:分)之间满足函数关系y=f(t),其中(R为常数).若空气中一氧化碳浓度不高于0.5 ppm,人就可以安全进入车库了,则下列说法正确的是( )A. B.C.排气12分钟后,人可以安全进入车库D.排气32分钟后,人可以安全进入车库【答案】BD【解析】因为,所以符合要求.又解得,a=128,故B正确,A错误.,当时,即,得,所以,即,所以排气32分钟后,人可以安全进入车库,故D正确,C错误,故选:BD.例3-8.“喊泉”是一种地下水的毛细现象,人们在泉口吼叫或发出其他声响时,声波传入泉洞内的储水池,进而产生“共鸣”等物理声学作用,激起水波,形成涌泉.声音越大,涌起的泉水越高.已知听到的声强与参考声强(约为,单位:)之比的常用对数称作声强的声强级,记作(单位:贝尔),即,取贝尔的10倍作为响度的常用单位,简称为分贝.已知某处“喊泉”的声音响度(单位:分贝)与喷出的泉水高度满足关系式,现知同学大喝一声激起的涌泉最高高度为,若同学大喝一声的声强大约相当于10个同学同时大喝一声的声强,则同学大喝一声激起的涌泉最高高度约为______dm.【答案】45【解析】设同学的声强为,喷出泉水高度为,则同学的声强为,喷出泉水高度为50 dm,由,得 ①,∵,∴ ②,①-②得,解得,∴同学大喝一声激起的涌泉最高高度约为45 dm.故答案为:45.例3-9.2023年10月31日,长征五号B遥四运载火箭带着中华民族千百年来探索浩瀚宇宙的梦想,将中国空间站梦天实验舱准确送入预定轨道在不考虑空气阻力的条件下,若火箭的最大速度v(单位:)和燃料的质量M(单位:t)、火箭(除燃料外)的质量m(单位:t)的关系满足,M,m,v之间的关系如图所示,则下列结论正确的是( )A.当时, B.当时,C.当时, D.当时,【答案】C【详解】由题及图象关系可知,在中,当一定时,越大,则越大,当一定时,越小,则越大,对于A,当时,,故A错误.对于B,当时,,故B错误.对于C,当时,,故C正确.对于D,因为,令,, ,故D错误.故选:C.例3-10.在如今这个5G时代,6G研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G速率有望达到1Tbps,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G数据传输速率有望比5G快100倍,时延达到亚毫秒级水平.香农公式是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率取决于信道宽带,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.若不改变宽带,而将信噪比从11提升至499,则最大信息传递率会提升到原来的_________倍.(结果保留一位小数)【答案】2.5/【解析】设提升前最大信息传递率为,提升后最大信息传递率为,则由题意可知,,,所以倍.所以最大信息传递率C会提升到原来的倍.故答案为:2.5例3-11.为落实党的二十大提出的“加快建设农业强国,扎实推动乡村振兴”的目标,银行拟在乡村开展小额贷款业务.根据调查的数据,建立了实际还款比例关于贷款人的年收入(单位:万元)的Logistic,模型:,已知当贷款大的年收入为8万元时,其实际还款比例为50%.若银行希望实际还款比例为40%,则贷款人的年收入为( )(精确到0.01万元,参考数据:,)A.4.65万元 B.5.63万元 C.6.40万元 D.10.00万元【答案】A【分析】先根据题中数据代入计算函数中参数的值,然后计算时的值即可.【详解】由题意,即,得,所以.令,得,得,得得.故选:A.例3-12.金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度与其采摘后时间(天)满足的函数解析式为,.若采摘后1天,金针菇失去的新鲜度为40%,采摘后3天,金针菇失去的新鲜度为80%.那么若不及时处理,采摘下来的金针菇在多长时间后开始失去全部新鲜度(已知,结果取一位小数)( )A.4.0天 B.4.3天 C.4.7天 D.5.1天【答案】C【解析】由已知,相除得,,,因为,故解得,设天后开始失去全部新鲜度,则,又,所以,,,.故选:C.题型四、已知函数模型的实际问题例4-1.某公司的收入由保险业务收入和理财业务收入两部分组成.该公司年总收入为亿元,其中保险业务收入为亿元,理财业务收入为亿元.该公司经营状态良好、收入稳定,预计每年总收入比前一年增加亿元.因越来越多的人开始注重理财,公司理财业务发展迅速.要求从年起每年通过理财业务的收入是前一年的倍,若要使得该公司年的保险业务收入不高于当年总收入的,则的值至少为( )A. B. C. D.【答案】A【解析】因为该公司年总收入为亿元,预计每年总收入比前一年增加 亿元,所以年的总收入为亿元,因为要求从年起每年通过理财业务的收入是前一年的倍,所以年通过理财业务的收入为亿元,所以,解得.故的值至少为,故选:A.例4-2.中国是茶的故乡,也是茶文化的发源地,茶文化是把茶、赏茶、闻茶、饮茶、品茶等习惯与中国的文化内涵相结合而形成的一种文化现象,具有鲜明的中国文化特征.其中沏茶、饮茶对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是,空气的温度是,经过t分钟后物体的温度为θ℃,满足公式.现有一壶水温为92℃的热水用来沏茶,由经验可知茶温为52℃时口感最佳,若空气的温度为12℃,那从沏茶开始,大约需要( )分钟饮用口感最佳.(参考数据;,)A.2.57 B.2.77 C.2.89 D.3.26【答案】B【解析】由题意得,代入数据得,整理得,即,解得;所以若空气的温度为12℃,从沏茶开始,大约需要2.77分钟饮用口感最佳.故选:B.例4-3.医学上常用基本传染数来衡量传染病的传染性强弱,其中,)表示天内的累计病例数.据统计某地发现首例型传染性病例,在内累计病例数达到例,取,根据上面的信息可以计算出型传染病的基本传染数.已知型传染病变异株的基本传染数(表示不超过的最大整数),平均感染周期为天(初始感染者传染个人为第一轮传染,经过一个周期后这个人每人再传染个人为第二轮传染,以此类推),则感染人数由个初始感染者增加到人大约需要的天数为( )(参考数据:)A.63 B.70 C.77 D.84【答案】A【解析】由,,可以得到.型传染病变异株的基本传染数,感染人数由个初始感染者增加到人大约需要轮传染,则每轮新增感染人数为,经过轮传染,总共感染人数为:,解得,又因为平均感染周期为天,所以感染人数由个初始感染者增加到人大约需要天.故选:A例4-4.等额分付资本回收是指起初投资P,在利率i,回收周期数n为定值的情况下,每期期末取出的资金A为多少时,才能在第n期期末把全部本利取出,即全部本利回收,其计算公式为:.某农业种植公司投资33万元购买一大型农机设备,期望投资收益年利率为10%,若每年年底回笼资金8.25万元,则该公司将至少在( )年内能全部收回本利和.(,,)A.4 B.5 C.6 D.7【答案】C【解析】由题意,知万元,万元,,由公式可得,整理得,等式两边取对数,得故选:C.例4-5.某全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为h(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),若,则S占地球表面积的百分比约为( )A.26% B.34% C.42% D.50%【答案】C【解析】设表示卫星,过作截面,截地球得大圆,过作圆的切线,线段交圆于,如图,则,,,,则,又,所以设地球表面积为,则所以.故选:C.题型五、构造函数模型的实际问题例5-1.为了提高员工的工作积极性,某外贸公司想修订新的“员工激励计划”新的计划有以下几点需求:①奖金随着销售业绩的提高而提高;②销售业绩增加时,奖金增加的幅度逐渐上升;③必须和原来的计划接轨:销售业绩在10万元或以内时奖金为0,超过10万元则开始计算奖金,销售业绩为20万元时奖金为1千元.设业绩为x()万元时奖金为f(x)千元,下面给出三个函数模型:①;②;③.其中.请选择合适的函数模型,并计算:业绩为100万元时奖金为___________千元.【答案】【解析】根据题意,当时,给出三个函数模型均满足“奖金随着销售业绩的提高而提高”,而只有模型“”满足“销售业绩增加时,奖金增加的幅度逐渐上升”,故模型选择:根据题意,则有:解得:则模型为:当时,故答案为:例5-2.现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取粒红豆,乙每次取粒白豆,同时进行,当红豆取完时,白豆还剩粒;第二轮,甲每次取粒红豆,乙每次取粒白豆,同时进行,当白豆取完时,红豆还剩粒.则红豆和白豆共有________粒.【答案】【解析】设红豆有粒,白豆有粒,由第一轮结果可知:,整理可得:;由第二轮结果可知:,整理可得:;当时,由得:(舍);当时,由得:(舍);当时,由得:,,即红豆和白豆共有粒.故答案为:.例5-3.2020年是全国决胜脱贫攻坚之年,“一帮一扶”工作组进驻某山区帮助农民脱贫,发现该山区盛产苹果、梨子、猕猴桃,工作人员文明在线上进行直播带货活动,促销方案如下:若一次购买水果总价不低于200元,则顾客少付款m元,每次订单付款成功后,农民会收到支付款的80%,在促销活动中,为了使得农民收入不低于总价的70%,则m的最大值为_________.【答案】25【解析】根据题意建立函数关系式,整理出恒成立,再由x的范围即可求解.设每笔订单促销前的总价为元,根据题意有,即恒成立,由题意得,所以,所以,即m的最大值为25.故答案为:25例5-4.某医院为了提高服务质量,对病员挂号进行了调查,其调查结果为:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后,排队的人数平均每分钟增加M人.假定挂号的速度是每窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟分恰好不会出现排队现象.根据以下信息,若医院承诺5分钟后不出现排队现象,则至少需要同时开放的窗口数为___.【答案】6【解析】设要同时开放n个窗口才能满足要求,则解得:,∴N+5M≤5Kn,∴24K+2K≤5Kn,解得n≥5.2.故至少同时开放6个窗口才能满足要求.故答案为6例5-5.某地街道呈现东——西、南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点______为发行站,使5个零售点沿街道发行站之间路程的和最短.【答案】(2,3)【解析】设发行站的位置为,零售点到发行站的距离为,这5个点的横纵坐标的平均值为,,记A(,3),画出图形可知,发行站的位置应该在点A附近,代入附近的点的坐标进行比较可知,在(2,3)处z取得最小值.例5-6.长江流域水库群的修建和联合调度,极大地降低了洪涝灾害风险,发挥了重要的防洪减灾效益.每年洪水来临之际,为保证防洪需要、降低防洪风险,水利部门需要在原有蓄水量的基础联合调度,统一蓄水,用蓄满指数(蓄满指数=×100)来衡量每座水库的水位情况.假设某次联合调度要求如下:(ⅰ)调度后每座水库的蓄满指数仍属于区间;(ⅱ)调度后每座水库的蓄满指数都不能降低;(ⅲ)调度前后,各水库之间的蓄满指数排名不变.记x为调度前某水库的蓄满指数,y为调度后该水库的蓄满指数,给出下面四个y关于x的函数解析式:①;②;③;④.则满足此次联合调度要求的函数解析式的个数为( ).A.1 B.2 C.3 D.4【答案】B【解析】① ,该函数在时函数值为,超过了范围,不合题意;② 为增函数,且且,则,符合题意;③ ,当时,不合题意④ ,当时,,故该函数在上单调递增,又设即,易知在上为减函数由在上连续,且,,则存在,有当,;当,;故在递增,在递减.,故上即上故④符合题意,所以②④满足题意,故选:B.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 专题13 函数的模型与应用 (解析版).doc 专题13 函数的模型与应用(原卷版).doc