资源简介 2023年全国各省份高考数学真题函数与导函数分类汇编(解析版)专题 函数与导函数一、单选题1.(2023年新课标Ⅰ卷 第4题)设函数在区间上单调递减,则的取值范围是( )A. B.C. D.【答案】D【分析】利用指数型复合函数单调性,判断列式计算作答.【详解】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D2.(2023年新课标Ⅱ卷 第4题)若为偶函数,则( ).A. B.0 C. D.1【答案】B【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.【详解】因为 为偶函数,则 ,解得,当时,,,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.3.(2023年新课标Ⅱ卷 第6题)已知函数在区间上单调递增,则a的最小值为( ).A. B.e C. D.【答案】C【分析】根据在上恒成立,再根据分参求最值即可求出.【详解】依题可知,在上恒成立,显然,所以,设,所以,所以在上单调递增,,故,即,即a的最小值为.故选:C.4.(2023年全国乙卷(文数)第5题,(理数)第4题)已知是偶函数,则( )A. B. C.1 D.2【答案】D【分析】根据偶函数的定义运算求解.【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.5.(2023年全国乙卷(文数)第8题)函数存在3个零点,则的取值范围是( )A. B. C. D.【答案】B【分析】写出,并求出极值点,转化为极大值大于0且极小值小于0即可.【详解】,则,若要存在3个零点,则要存在极大值和极小值,则,令,解得或,且当时,,当,,故的极大值为,极小值为,若要存在3个零点,则,即,解得,故选:B.6.(2023年全国甲卷(文数)第8题)曲线在点处的切线方程为( )A. B. C. D.【答案】C【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,所以,所以所以所以曲线在点处的切线方程为.故选:C7.(2023年全国甲卷(文数)第11题)已知函数.记,则( )A. B. C. D.【答案】A【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,因为,而,所以,即由二次函数性质知,因为,而,即,所以,综上,,又为增函数,故,即.故选:A.8.(2023年北京卷第4题)下列函数中,在区间上单调递增的是( )A. B.C. D.【答案】C【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC,举反例排除D即可.【详解】对于A,因为在上单调递增,在上单调递减,所以在上单调递减,故A错误;对于B,因为在上单调递增,在上单调递减,所以在上单调递减,故B错误;对于C,因为在上单调递减,在上单调递减,所以在上单调递增,故C正确;对于D,因为,,显然在上不单调,D错误.故选:C.9.(2023年天津卷第4题)函数的图象如下图所示,则的解析式可能为( ) A. B.C. D.【答案】D【分析】由图知函数为偶函数,应用排除,先判断B中函数的奇偶性,再判断A、C中函数在上的函数符号排除选项,即得答案.【详解】由图知:函数图象关于y轴对称,其为偶函数,且,由且定义域为R,即B中函数为奇函数,排除;当时、,即A、C中上函数值为正,排除;故选:D二、多选题10.(2023年新课标Ⅰ卷 第11题)已知函数的定义域为,,则( ).A. B.C.是偶函数 D.为的极小值点【答案】ABC【分析】方法一:利用赋值法,结合函数奇遇性的判断方法可判断选项ABC,举反例即可排除选项D.方法二:选项ABC的判断与方法一同,对于D,可构造特殊函数进行判断即可.【详解】方法一:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,不妨令,显然符合题设条件,此时无极值,故错误.方法二:因为,对于A,令,,故正确.对于B,令,,则,故B正确.对于C,令,,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,当时,对两边同时除以,得到,故可以设,则,当肘,,则,令,得;令,得;故在上单调递减,在上单调递增,因为为偶函数,所以在上单调递增,在上单调递减,显然,此时是的极大值,故D错误.故选:.11.(2023年新课标Ⅱ卷 第11题)若函数既有极大值也有极小值,则( ).A. B. C. D.【答案】BCD【分析】求出函数的导数,由已知可得在上有两个变号零点,转化为一元二次方程有两个不等的正根判断作答.【详解】函数的定义域为,求导得,因为函数既有极大值也有极小值,则函数在上有两个变号零点,而,因此方程有两个不等的正根,于是,即有,,,显然,即,A错误,BCD正确.故选:BCD第II卷(非选择题)请点击修改第II卷的文字说明三、填空题12.(2023年全国乙卷(理数)第16题)设,若函数在上单调递增,则a的取值范围是______.【答案】【分析】原问题等价于恒成立,据此将所得的不等式进行恒等变形,可得,由右侧函数的单调性可得实数的二次不等式,求解二次不等式后可确定实数的取值范围.【详解】由函数的解析式可得在区间上恒成立,则,即在区间上恒成立,故,而,故,故即,故,结合题意可得实数的取值范围是.故答案为:.13.(2023年全国甲卷(文数)第14题,(理数)第13题)若为偶函数,则________.【答案】2【分析】利用偶函数的性质得到,从而求得,再检验即可得解.【详解】因为为偶函数,定义域为,所以,即,则,故,此时,所以,又定义域为,故为偶函数,所以.故答案为:2.14.(2023年北京卷第11题)已知函数,则____________.【答案】1【分析】根据给定条件,把代入,利用指数、对数运算计算作答.【详解】函数,所以.故答案为:115.(2023年天津卷第15题)若函数有且仅有两个零点,则的取值范围为_________.【答案】【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.【详解】(1)当时,,即,若时,,此时成立;若时,或,若方程有一根为,则,即且;若方程有一根为,则,解得:且;若时,,此时成立.(2)当时,,即,若时,,显然不成立;若时,或,若方程有一根为,则,即;若方程有一根为,则,解得:;若时,,显然不成立;综上,当时,零点为,;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,只有一个零点;当时,零点为,;当时,零点为.所以,当函数有两个零点时,且.故答案为:.【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.四、解答题16.(2023年新课标Ⅰ卷 第19题)已知函数.(1)讨论的单调性;(2)证明:当时,.【答案】(1)答案见解析(2)证明见解析【分析】(1)先求导,再分类讨论与两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为的恒成立问题,构造函数,利用导数证得即可.方法二:构造函数,证得,从而得到,进而将问题转化为的恒成立问题,由此得证.【详解】(1)因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)方法一:由(1)得,,要证,即证,即证恒成立,令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.17.(2023年新课标Ⅱ卷 第22题)(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.【答案】(1)证明见详解(2)【分析】(1)分别构建,,求导,利用导数判断原函数的单调性,进而可得结果;(2)根据题意结合偶函数的性质可知只需要研究在上的单调性,求导,分类讨论和,结合(1)中的结论放缩,根据极大值的定义分析求解.【详解】(1)构建,则对恒成立,则在上单调递增,可得,所以;构建,则,构建,则对恒成立,则在上单调递增,可得,即对恒成立,则在上单调递增,可得,所以;综上所述:.(2)令,解得,即函数的定义域为,若,则,因为在定义域内单调递减,在上单调递增,在上单调递减,则在上单调递减,在上单调递增,故是的极小值点,不合题意,所以.当时,令因为,且,所以函数在定义域内为偶函数,由题意可得:,(i)当时,取,,则,由(1)可得,且,所以,即当时,,则在上单调递增,结合偶函数的对称性可知:在上单调递减,所以是的极小值点,不合题意;(ⅱ)当时,取,则,由(1)可得,构建,则,且,则对恒成立,可知在上单调递增,且,所以在内存在唯一的零点,当时,则,且,则,即当时,,则在上单调递减,结合偶函数的对称性可知:在上单调递增,所以是的极大值点,符合题意;综上所述:,即,解得或,故a的取值范围为.【点睛】关键点睛:1.当时,利用,换元放缩;2.当时,利用,换元放缩.18.(2023年全国乙卷(文数)第20题)已知函数.(1)当时,求曲线在点处的切线方程.(2)若函数在单调递增,求的取值范围.【答案】(1);(2).【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)原问题即在区间上恒成立,整理变形可得在区间上恒成立,然后分类讨论三种情况即可求得实数的取值范围.【详解】(1)当时,,则,据此可得,所以函数在处的切线方程为,即.(2)由函数的解析式可得,满足题意时在区间上恒成立.令,则,令,原问题等价于在区间上恒成立,则,当时,由于,故,在区间上单调递减,此时,不合题意;令,则,当,时,由于,所以在区间上单调递增,即在区间上单调递增,所以,在区间上单调递增,,满足题意.当时,由可得,当时,在区间上单调递减,即单调递减,注意到,故当时,,单调递减,由于,故当时,,不合题意.综上可知:实数得取值范围是.【点睛】方法点睛:(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)由函数的单调性求参数的取值范围的方法①函数在区间上单调,实际上就是在该区间上(或)恒成立.②函数在区间上存在单调区间,实际上就是(或)在该区间上存在解集.19.(2023年全国乙卷(理数)第21题)已知函数.(1)当时,求曲线在点处的切线方程;(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.(3)若在存在极值,求a的取值范围.【答案】(1);(2)存在满足题意,理由见解析.(3).【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数的值,进一步结合函数的对称性利用特殊值法可得关于实数的方程,解方程可得实数的值,最后检验所得的是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论,和三中情况即可求得实数的取值范围.【详解】(1)当时,,则,据此可得,函数在处的切线方程为,即.(2)由函数的解析式可得,函数的定义域满足,即函数的定义域为,定义域关于直线对称,由题意可得,由对称性可知,取可得,即,则,解得,经检验满足题意,故.即存在满足题意.(3)由函数的解析式可得,由在区间存在极值点,则在区间上存在变号零点;令,则,令,在区间存在极值点,等价于在区间上存在变号零点,当时,,在区间上单调递减,此时,在区间上无零点,不合题意;当,时,由于,所以在区间上单调递增,所以,在区间上单调递增,,所以在区间上无零点,不符合题意;当时,由可得,当时,,单调递减,当时,,单调递增,故的最小值为,令,则,函数在定义域内单调递增,,据此可得恒成立,则,令,则,当时,单调递增,当时,单调递减,故,即(取等条件为),所以,,且注意到,根据零点存在性定理可知:在区间上存在唯一零点.当时,,单调减,当时,,单调递增,所以.令,则,则函数在上单调递增,在上单调递减,所以,所以,所以,所以函数在区间上存在变号零点,符合题意.综合上面可知:实数得取值范围是.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.20.(2023年全国甲卷(文数)第20题,(理数)第21题)已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.【答案】(1)在上单调递减(2)【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【详解】(1)因为,所以,则,令,由于,所以,所以,因为,,,所以在上恒成立,所以在上单调递减.(2)法一:构建,则,若,且,则,解得,当时,因为,又,所以,,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,,故在上恒成立,所以当时,,满足题意;当时,由于,显然,所以,满足题意;当时,因为,令,则,注意到,若,,则在上单调递增,注意到,所以,即,不满足题意;若,,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.21.(2023年全国甲卷(理数)第21题)已知函数(1)当时,讨论的单调性;(2)若恒成立,求a的取值范围.【答案】(1)答案见解析.(2)【分析】(1)求导,然后令,讨论导数的符号即可;(2)构造,计算的最大值,然后与0比较大小,得出的分界点,再对讨论即可.【详解】(1)令,则则当当,即.当,即.所以在上单调递增,在上单调递减(2)设设所以.若,即在上单调递减,所以.所以当,符合题意.若当,所以..所以,使得,即,使得.当,即当单调递增.所以当,不合题意.综上,的取值范围为.【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性在定义域内是减函数,若,当,对应当.22.(2023年北京卷第20题)设函数,曲线在点处的切线方程为.(1)求的值;(2)设函数,求的单调区间;(3)求的极值点个数.【答案】(1)(2)答案见解析(3)3个【分析】(1)先对求导,利用导数的几何意义得到,,从而得到关于的方程组,解之即可;(2)由(1)得的解析式,从而求得,利用数轴穿根法求得与的解,由此求得的单调区间;(3)结合(2)中结论,利用零点存在定理,依次分类讨论区间,,与上的零点的情况,从而利用导数与函数的极值点的关系求得的极值点个数.【详解】(1)因为,所以,因为在处的切线方程为,所以,,则,解得,所以.(2)由(1)得,则,令,解得,不妨设,,则,易知恒成立,所以令,解得或;令,解得或;所以在,上单调递减,在,上单调递增,即的单调递减区间为和,单调递增区间为和.(3)由(1)得,,由(2)知在,上单调递减,在,上单调递增,当时,,,即所以在上存在唯一零点,不妨设为,则,此时,当时,,则单调递减;当时,,则单调递增;所以在上有一个极小值点;当时,在上单调递减,则,故,所以在上存在唯一零点,不妨设为,则,此时,当时,,则单调递增;当时,,则单调递减;所以在上有一个极大值点;当时,在上单调递增,则,故,所以在上存在唯一零点,不妨设为,则,此时,当时,,则单调递减;当时,,则单调递增;所以在上有一个极小值点;当时,,所以,则单调递增,所以在上无极值点;综上:在和上各有一个极小值点,在上有一个极大值点,共有个极值点.【点睛】关键点睛:本题第3小题的解题关键是判断与的正负情况,充分利用的单调性,寻找特殊点判断即可得解.23.(2023年天津卷第20题)已知函数.(1)求曲线在处切线的斜率;(2)当时,证明:;(3)证明:.【答案】(1)(2)证明见解析(3)证明见解析【分析】(1)利用导数的几何意义求斜率;(2)问题化为时,构造,利用导数研究单调性,即可证结论;(3)构造,,作差法研究函数单调性可得,再构造且,应用导数研究其单调性得到恒成立,对作放缩处理,结合累加得到,即可证结论.【详解】(1),则,所以,故处的切线斜率为;(2)要证时,即证,令且,则,所以在上递增,则,即.所以时.(3)设,,则,由(2)知:,则,所以,故在上递减,故;下证,令且,则,当时,递增,当时,递减,所以,故在上恒成立,则,所以,,…,,累加得:,而,因为,所以,则,所以,故;综上,,即.【点睛】关键点点睛:第三问,作差法研究单调性证右侧不等关系,再构造且,导数研究其函数符号得恒成立,结合放缩、累加得到为关键.2023年全国各省份高考数学真题函数与导函数分类汇编(原卷版)专题6 函数与导函数一、单选题1.(2023年新课标Ⅰ卷 第4题)设函数在区间上单调递减,则的取值范围是( )A. B.C. D.2.(2023年新课标Ⅱ卷 第4题)若为偶函数,则( ).A. B.0 C. D.13.(2023年新课标Ⅱ卷 第6题)已知函数在区间上单调递增,则a的最小值为( ).A. B.e C. D.4.(2023年全国乙卷(文数)第5题,(理数)第4题)已知是偶函数,则( )A. B. C.1 D.25.(2023年全国乙卷(文数)第8题)函数存在3个零点,则的取值范围是( )A. B. C. D.6.(2023年全国甲卷(文数)第8题)曲线在点处的切线方程为( )A. B. C. D.7.(2023年全国甲卷(文数)第11题)已知函数.记,则( )A. B. C. D.8.(2023年北京卷第4题)下列函数中,在区间上单调递增的是( )A. B.C. D.9.(2023年天津卷第4题)函数的图象如下图所示,则的解析式可能为( ) A. B.C. D.二、多选题10.(2023年新课标Ⅰ卷 第11题)已知函数的定义域为,,则( ).A. B.C.是偶函数 D.为的极小值点11.(2023年新课标Ⅱ卷 第11题)若函数既有极大值也有极小值,则( ).A. B. C. D.三、填空题12.(2023年全国乙卷(理数)第16题)设,若函数在上单调递增,则a的取值范围是______.13.(2023年全国甲卷(文数)第14题,(理数)第13题)若为偶函数,则________.14.(2023年北京卷第11题)已知函数,则____________.15.(2023年天津卷第15题)若函数有且仅有两个零点,则的取值范围为_________.四、解答题16.(2023年新课标Ⅰ卷 第19题)已知函数.(1)讨论的单调性;(2)证明:当时,.17.(2023年新课标Ⅱ卷 第22题)(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.18.(2023年全国乙卷(文数)第20题)已知函数.(1)当时,求曲线在点处的切线方程.(2)若函数在单调递增,求的取值范围.19.(2023年全国乙卷(理数)第21题)已知函数.(1)当时,求曲线在点处的切线方程;(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.(3)若在存在极值,求a的取值范围.20.(2023年全国甲卷(文数)第20题,(理数)第21题)已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.(2023年全国甲卷(理数)第21题)已知函数(1)当时,讨论的单调性;(2)若恒成立,求a的取值范围.22.(2023年北京卷第20题)设函数,曲线在点处的切线方程为.(1)求的值;(2)设函数,求的单调区间;(3)求的极值点个数.23.(2023年天津卷第20题)已知函数.(1)求曲线在处切线的斜率;(2)当时,证明:;(3)证明:. 展开更多...... 收起↑ 资源列表 2023年全国各省份高考数学真题函数与导函数分类汇编(原卷版).docx 2023年全国各省份高考数学真题函数与导函数分类汇编(解析版).docx