江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含解析)

资源下载
  1. 二一教育资源

江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含解析)

资源简介

中小学教育资源及组卷应用平台
江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.实数的运算(共2小题)
1.(2023 苏州)计算:|﹣2|﹣+32.
2.(2021 苏州)计算:+|﹣2|﹣32.
二.代数式求值(共1小题)
3.(2022 苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.
三.分式的化简求值(共2小题)
4.(2021 苏州)先化简,再求值:(1+) ,其中x=﹣1.
5.(2023 苏州)先化简,再求值: ﹣,其中a=.
四.零指数幂(共1小题)
6.(2022 苏州)计算:|﹣3|+22﹣(﹣1)0.
五.解二元一次方程组(共1小题)
7.(2021 苏州)解方程组:.
六.解分式方程(共1小题)
8.(2022 苏州)解方程:+=1.
七.解一元一次不等式组(共1小题)
9.(2023 苏州)解不等式组:.
八.反比例函数图象上点的坐标特征(共1小题)
10.(2021 苏州)如图,在平面直角坐标系中,四边形OABC为矩形,点C,A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,一次函数y=﹣3x+k的图象经过点C、D,反比例函数y=(x>0)的图象经过点B,求k的值.
九.反比例函数与一次函数的交点问题(共1小题)
11.(2023 苏州)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A(4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.
(1)求n,k的值;
(2)当m为何值时,AB OD的值最大?最大值是多少?
一十.全等三角形的判定与性质(共1小题)
12.(2023 苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.
(1)求证:△ADE≌△ADF;
(2)若∠BAC=80°,求∠BDE的度数.
一十一.圆内接四边形的性质(共1小题)
13.(2021 苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.
(1)求证:BD=ED;
(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.
一十二.用样本估计总体(共1小题)
14.(2022 苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:
训前 成绩(分) 6 7 8 9 10
划记 正正 正 正
人数(人) 12 4 7 5 4
培训后 成绩(分) 6 7 8 9 10
划记 一 正 正正正
人数(人) 4 1 3 9 15
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m   n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
一十三.条形统计图(共2小题)
15.(2023 苏州)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:
(1)这32名学生在培训前得分的中位数对应等级应为    ;(填“合格”、“良好”或“优秀”)
(2)求这32名学生培训后比培训前的平均分提高了多少?
(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?
16.(2021 苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为    名,补全条形统计图(画图并标注相应数据);
(2)在扇形统计图中,选择“陶艺”课程的学生占    %;
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
一十四.列表法与树状图法(共1小题)
17.(2022 苏州)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,这个球是白球的概率为    ;
(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)
一十五.游戏公平性(共1小题)
18.(2021 苏州)4张相同的卡片上分别写有数字0、1、﹣2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为    ;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.实数的运算(共2小题)
1.(2023 苏州)计算:|﹣2|﹣+32.
【答案】9.
【解答】解:原式=2﹣2+9
=0+9
=9.
2.(2021 苏州)计算:+|﹣2|﹣32.
【答案】﹣5.
【解答】解:原式=2+2﹣9
=﹣5.
二.代数式求值(共1小题)
3.(2022 苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.
【答案】3.
【解答】解:原式=x2﹣2x+1+x2+x
=2x2﹣x+1,
∵3x2﹣2x﹣3=0,
∴x2﹣x=1,
∴原式=2(x2﹣x)+1
=2×1+1
=3.
三.分式的化简求值(共2小题)
4.(2021 苏州)先化简,再求值:(1+) ,其中x=﹣1.
【答案】x+1,.
【解答】解:(1+)


=x+1,
当x=﹣1时,原式=﹣1+1=.
5.(2023 苏州)先化简,再求值: ﹣,其中a=.
【答案】,﹣1.
【解答】解:原式= ﹣
=﹣

=,
当a=时,
原式=
=﹣1.
四.零指数幂(共1小题)
6.(2022 苏州)计算:|﹣3|+22﹣(﹣1)0.
【答案】6.
【解答】解:原式=3+4﹣1
=6.
五.解二元一次方程组(共1小题)
7.(2021 苏州)解方程组:.
【答案】见试题解答内容
【解答】解:
由①式得y=3x+4,
代入②式得x﹣2(3x+4)=﹣3
解得x=﹣1
将x=﹣1代入②式得﹣1﹣2y=﹣3,得y=1
∴方程组解为
六.解分式方程(共1小题)
8.(2022 苏州)解方程:+=1.
【答案】x=﹣.
【解答】解:方程两边同乘以x(x+1)得:
x2+3(x+1)=x(x+1),
解整式方程得:x=﹣,
经检验,x=﹣是原方程的解,
∴原方程的解为x=﹣.
七.解一元一次不等式组(共1小题)
9.(2023 苏州)解不等式组:.
【答案】.
【解答】解:解不等式2x+1>0得x>﹣,
解不等式 得x<2.
∴不等式组的解集是 .
八.反比例函数图象上点的坐标特征(共1小题)
10.(2021 苏州)如图,在平面直角坐标系中,四边形OABC为矩形,点C,A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,一次函数y=﹣3x+k的图象经过点C、D,反比例函数y=(x>0)的图象经过点B,求k的值.
【答案】见试题解答内容
【解答】解:把y=0代入y=﹣3x+k,得x=,
∴C(,0),
.∵BC⊥x轴,
∴点B横坐标为,
把x=代入y=,得y=3,
∴B(,3),
∵点D为AB的中点,
∴AD=BD.
∴D(,3),
∵点D在直线y=﹣3x+k上,
∴3=﹣3×+k,
∴k=6.
九.反比例函数与一次函数的交点问题(共1小题)
11.(2023 苏州)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A(4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.
(1)求n,k的值;
(2)当m为何值时,AB OD的值最大?最大值是多少?
【答案】(1)8,32;(2)6,36.
【解答】解:(1)将点A(4,n)代入y=2x,得:n=8,
∴点A的坐标为(4,8),
将点A(4,8)代入,得:k=32.
(2)∵点B的横坐标大于点D的横坐标,
∴点B在点D的右侧.
过点C作直线EF⊥x轴于F,交AB于E,
由平移的性质得:AB∥x轴,AB=m,
∴∠B=∠CDF,
∵点C为BD的中点,
∴BC=DC,
在△ECB和△FCD中,

∴△ECB≌△FCD(ASA),
∴BE=DF,CE=CF.
∵AB∥x轴,点A的坐标为(4,8),
∴EF=8,
∴CE=CF=4,
∴点C的纵坐标为4,
由(1)知:反比例函数的解析式为:,
∴当y=4时,x=8,
∴点C的坐标为(8,4),
∴点E的坐标为(8,8),点F的坐标为(8,0),
∵点A(4,8),AB=m,AB∥x轴,
∴点B的坐标为(m+4,8),
∴BE=m+4﹣8=m﹣4,
∴DF=BE=m﹣4,
∴OD=8﹣(m﹣4)=12﹣m
AB OD=m(12﹣m)=﹣(m﹣6)2+36
∴当 m=6时,AB OD取得最大值,最大值为36.
一十.全等三角形的判定与性质(共1小题)
12.(2023 苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.
(1)求证:△ADE≌△ADF;
(2)若∠BAC=80°,求∠BDE的度数.
【答案】(1)证明见解析;
(2)20°.
【解答】(1)证明:∵AD是△ABC的角平分线,
∴∠BAD=∠CAD.
由作图知:AE=AF.
在△ADE和△ADF中,

∴△ADE≌△ADF(SAS);
(2)解:∵∠BAC=80°,AD为△ABC的角平分线,
∴∠EAD=∠BAC=40°,
由作图知:AE=AD.
∴∠AED=∠ADE,
∴∠ADE=×(180°﹣40°)=70°,
∵AB=AC,AD为△ABC的角平分线,
∴AD⊥BC.
∴∠BDE=90°﹣∠ADE=20°.
一十一.圆内接四边形的性质(共1小题)
13.(2021 苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.
(1)求证:BD=ED;
(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.
【答案】(1)证明见解答过程;
(2).
【解答】(1)证明:∵四边形ABCD内接于⊙O,
∴∠A=∠DCE,
∵∠1=∠2,
∴=,
∴AD=DC,
在△ABD和△DCE中,

∴△ABD≌△CED(SAS),
∴BD=ED;
(2)解:过点D作DM⊥BE于M,
∵AB=4,BC=6,CE=AB,
∴BE=BC+EC=10,
∵BD=ED,DM⊥BE,
∴BM=ME=BE=5,
∴CM=BC﹣BM=1,
∵∠ABC=60°,∠1=∠2,
∴∠2=30°,
∴DM=BM tan∠2=5×=,
∴tan∠DCB==.
一十二.用样本估计总体(共1小题)
14.(2022 苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:
训前 成绩(分) 6 7 8 9 10
划记 正正 正 正
人数(人) 12 4 7 5 4
培训后 成绩(分) 6 7 8 9 10
划记 一 正 正正正
人数(人) 4 1 3 9 15
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m < n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
【答案】(1)<;
(2)25%;
(3)220人.
【解答】解:∵培训前测试成绩的中位数m==7.5,培训后测试成绩的中位数n==9,
∴m<n;
故答案为:<;
(2)培训前:×100%,培训后:×100%,
×100%﹣×100%=25%,
答:测试成绩为“6分”的百分比比培训前减少了25%;
(3)培训前:640×=80,培训后:640×=300,
300﹣80=220,
答:测试成绩为“10分”的学生增加了220人.
一十三.条形统计图(共2小题)
15.(2023 苏州)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:
(1)这32名学生在培训前得分的中位数对应等级应为  合格 ;(填“合格”、“良好”或“优秀”)
(2)求这32名学生培训后比培训前的平均分提高了多少?
(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?
【答案】(1)合格;
(2)提高2.5分;
(3)240名.
【解答】解:(1)由题意得,这32名学生在培训前得分的中位数对应等级应为合格,
故答案为:合格;
(2)培训前的平均分为:(25×2+5×6+2×8)÷32=3(分),
培调后的平均分为:(8×2+16×6+8×8)÷32=5.5(分),
培训后比培训前的平均分提高2.5分;
(3)解法示例:
样本中培训后“良好”的比例为:=0.50,
样本中培训后“优秀”的比例为:==0.25,
∴培训后考分等级为“合格”与“优秀”的学生共有320×75%=240(名).
16.(2021 苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为  50 名,补全条形统计图(画图并标注相应数据);
(2)在扇形统计图中,选择“陶艺”课程的学生占  10 %;
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
【答案】(1)50名,20名,补图见解答;
(2)10%;
(3)200名.
【解答】解:(1)参加问卷调查的学生人数为=50(名),
剪纸的人数有:50﹣15﹣10﹣5=20(名),补全统计图如下:
故答案为:50;
(2)在扇形统计图中,选择“陶艺”课程的学生所占的百分比是:×100%=10%.
故答案为:10;
(3)1000×=200(名),
答:估计选择“刺绣”课程的学生有200名.
一十四.列表法与树状图法(共1小题)
17.(2022 苏州)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,这个球是白球的概率为   ;
(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)
【答案】(1);
(2).
【解答】解:(1)∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,
∴搅匀后从中任意摸出1个球,则摸出白球的概率为:=.
故答案为:;
(2)画树状图如图所示:
共有16种不同的结果数,其中两个球颜色不同的有6种,
∴2次摸到的球恰好是1个白球和1个红球的概率为=.
一十五.游戏公平性(共1小题)
18.(2021 苏州)4张相同的卡片上分别写有数字0、1、﹣2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为   ;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
【答案】(1);(2)公平.
【解答】解:(1)第一次抽取的卡片上数字是负数的概率为,
故答案为:.
(2)列表如下:
0 1 ﹣2 3
0 1 ﹣2 3
1 ﹣1 ﹣3 2
﹣2 2 3 5
3 ﹣3 ﹣2 ﹣5
由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,
所以甲获胜的概率=乙获胜的概率==,
∴此游戏公平.
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览