资源简介 第六章 数据的分析6.4.数据的离散程度第2课时 方差的应用学习目标1.进一步加深理解平均数、方差、标准差的概念;2.会结合实际,运用相应的知识解决问题,体会样本估计总体的思想。学习策略经历对统计图中数据的读取与处理,发展学生初步的统计意识和数据处理能力。根据极差、方差、标准差的大小对实际问题作出解释,培养学生解决问题能力。学习过程一情境导入:课前,从事下列活动:(1)两人一组,在安静的环境中,一人估计1min的时间,另一人记下实际时间,将结果记录下来。(2)在吵闹的环境中,再做一次这样的实验。二.新课学习:1:根据图表感受数据的稳定性1.射箭时,通常新手成绩会比老手差一些,而且成绩通常不太稳定。小明和小华练习射箭,第一局12支箭射完后,两人的成绩如下图所示。请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由。2.(1)从下面两幅图中,你能分别读出甲、乙两队员射击成绩的平均数吗?(2)通过估计比较甲、乙两队员射击成绩的方差的大小?说说你的估计过程。(3)分别计算甲、乙两队员射击成绩的方差,看看刚才自己的估计是否正确。(4)丙队员的射击成绩如右图,判断三人射击成绩的方差的大小。3.从图形中比较两组数据的稳定性,你有哪些经验,与同伴交流。2:感受生活中的稳定性1.将全班课前收集的数据汇总起来,分别计算安静状态和吵闹环境下估计结果的平均值和方差。2.两种情况下的结果是否一致,说说你的理由。3:利用数据的稳定性做出抉择1.某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:米)分别如下:甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67。乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75。(1)甲、乙两名运动员的跳高的平均成绩分别是多少?(2)他们哪个的成绩更为稳定?(3)经预测,跳高1.65米就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测1.70方可夺得冠军呢?三.尝试应用:1. 甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是( )A. 甲 B. 乙 C.丙 D.丁队员 平均成绩 方差甲 9.7 2.12乙 9.6 0.56丙 9.8 0.56丁 9.6 1.342. 一次科技知识竞赛,两组学生成绩统计如下:分数 50 60 70 80 90 100人数 甲组 2 5 10 13 14 6乙组 4 4 16 2 12 12已经算得两个组的人平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.四.自主总结:方差越小表示这组数据越稳定,但不是方差越小就表示这组数据越好,而是对具体的情况进行具体分析才能得出正确的结论。五.达标测试1.现有甲、乙两个合唱队队员的平均身高为170cm,方程分别是、,且>,则两个队的队员的身高较整齐的是( )A.甲队 B.乙队 C.两队一样整齐 D.不能确定2.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是( )A.甲 B.乙 C.丙 D.丁3.茶叶厂用甲.乙两台包装机分装质量为400克的茶叶,从它们各自分装的茶叶中分别随机抽取10盒,测得它们实际质量的平均数和标准差分别如表所示,则包装茶叶质量较稳定的包装机为( )A.甲 B.乙 C.甲和乙 D.无法确定4.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为 (填>或<).5.某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如下表:次数 选手甲的成绩(环) 选手乙的成绩(环)1 9.6 9.52 9.7 9.93 10.5 10.34 10.0 9.75 9.7 10.56 9.9 10.37 10.0 10.08 10.6 9.8根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?尝试应用答案1. C2.解: (1)甲组成绩的众数为90分,乙组成绩的众数为70分, 以成绩的众数比较看,甲组成绩好些.(2)因为,从数据的离散程度的角度看,甲组较优;(3)甲、乙两组成绩的中位数都是80分,甲组成绩在中位数以上(包括中位数)的人有33人,乙组成绩在中位数以上(包括中位数)的人有26人,从这一角度,看甲组成绩总体较好;(4)从成绩统计表看,甲组成绩高于80分的人数为20人,乙组成绩高于80分的人数为24人,乙组成绩集中在高分段的人数多,同时,乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组的成绩较好.达标测试答案:1.B 2.B 3.B 4.>5.解:甲=(9.6+9.7+…+10.6)=10.0,乙=(9.5+9.9+…+9.8)=10.0s=0.12,s=0.102 5.结果甲、乙两选手的平均成绩相同,s>s.乙的方差小,波动就小,似乎应该选乙选手参加比赛.但是就这个问题而言,我们不能仅看平均成绩和方差就妄下结论.在这里平均成绩和方差不是最重要的,重要的是看他们的发展潜力或比赛时的竞技状态.从甲、乙两选手的最后四次成绩看,甲的状态正逐步回升,成绩越来越好,而乙明显不如甲的状态好.所以从这个角度看,应选甲选手参加比赛更好. 展开更多...... 收起↑ 资源预览