八年级数学上册试题 第1章 勾股定理 单元测试卷 北师大版(含答案)

资源下载
  1. 二一教育资源

八年级数学上册试题 第1章 勾股定理 单元测试卷 北师大版(含答案)

资源简介

第1章勾股定理单元测试卷
一、选择题(本大题共10小题,每小题3分,共30分).
1.a、b、c为△ABC三边,下列条件不能判断它是直角三角形的是(  )
A.a2=c2﹣b2
B.∠A:∠B:∠C=3:4:5
C.a=3,b=4,c=5
D.a=5k,b=12k,c=13k(k为正整数)
2.一个长为10米的梯子AB斜靠在墙上,AC⊥BC,AC=BC,当梯子的顶端A沿AC方向下滑x米时,梯子足B沿CB方向水平滑动y米,则x与y 的大小关系是(  )
A.x=y B.x>y C.x<y D.不确定
3.下列长度的三条线段能组成直角三角形的是(  )
A.4,6,8 B.6,8,9 C.7,24,25 D.5,11,12
4.如图,△ABC中,∠ABC=90°,AC=9,BC=4,则正方形ABDE的面积为(  )
A.18 B.36 C.65 D.72
5.若直角三角形的两边长分别为a,b,且满足a2﹣6a+9+|b﹣4|=0,则该直角三角形的第三边长的平方为(  )
A.25 B.7 C.25或7 D.25或16
6.D是△ABC中BC边上的一点,若AC2﹣CD2=AD2,则AD是(  )
A.BC边上的中线 B.∠BAC的角平分线
C.BC边上的高线 D.AC边上的高线
7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为(  )
A.10m B.11m C.12m D.13m
8.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中的阴影部分的面积(  )
A.9 B. C. D.3
9.2002年国际数学家大会在北京召开,大会选用了赵爽弦图作为会标的中心图案.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形.如果大正方形的面积是25,直角三角形较长的直角边长是a,较短的直角边长是b,且(a+b)2的值为49,那么小正方形的面积是(  )
A.2 B.0.5 C.13 D.1
10.两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为(  )
A.(a+b)2=c2 B.(a﹣b)2=c2 C.a2﹣b2=c2 D.a2+b2=c2
二、填空题(本大题共8小题,每小题3分,共24分)
11.如图,在一次暴风灾害中,一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30°角,那么这棵树折断之前的高度是   米.
12.如图,小华将升旗的绳子拉到竖直旗杆的底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆6m处,此时绳子末端距离地面2m,则绳子的总长度为   m.
13.如图,将一根长12厘米的筷子置于底面半径为3厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为   厘米.
14.如图,在3x3的网格中每个小正方形的边长都是1,点A、B、C都是小正方形的顶点,则∠ABC的度数为   .
15.三角形的三边a,b,c满足(a﹣b)2=c2﹣2ab,则这个三角形是   .
16.如图,△ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别在AB,BC边上匀速移动,它们的速度分别为2cm/s和1cm/s,当点P到达点B时,P,Q两点停止运动,设点P的运动时间为ts,则当t=   s时,△PBQ为直角三角形.
17.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a,较短直角边为b,若ab=8,大正方形的面积为25,则小正方形的边长为   .
18.如图,Rt△ABC中,∠C=90°,AB=5,AC=4,分别以Rt△ABC三边为直径作半圆,则阴影部分面积为   .
三、解答题(本大题共8小题,共66分.)
19.如图,已知△ABC和△BDE是等腰直角三角形,∠ABC=∠DBE=90°,点D在AC上. (1)求证:△ABD≌△CBE;(2)若DB=1,求AD2+CD2的值.
20.在四边形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,问:在BC上是否存在点P,使得AP⊥PD?若存在,求出BP的长;若不存在,请说明理由.
21.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么以a,b,c为长度的线段首尾顺次相接形成的是什么样的三角形?请说明理由.
22.在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,顶点在格点上的三角形叫做格点三角形,如格点三角形△ABC.
(1)△ABC的面积为   ;
(2)△ABC的形状为   ;
(3)根据图中标示的各点(A、B、C、D、E、F)位置,与△ABC全等的格点三角形是   .
23.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形吗?为什么?
(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米80元,试问铺满这块空地共需花费多少元?
24.有一块直角三角形的绿地,量得两直角边长分别为5m,12m.现在要将绿地扩充成等腰三角形绿地,且扩允部分是以12m为直角边的直角三角形,求扩充部分三角形绿地的面积.(如图备用)
25.(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4ab+(a﹣b)2,所以4ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.
(2)试用勾股定理解决以下问题:
如果直角三角形ABC的两直角边长为3和4,则斜边上的高为   .
(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.
26.阅读理解:
【问题情境】
教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?
【探索新知】
从面积的角度思考,不难发现:
大正方形的面积=小正方形的面积+4个直角三角形的面积
从而得数学等式:   ;(用含字母a、b、c的式子表示)
化简证得勾股定理:a2+b2=c2
【初步运用】
(1)如图1,若b=2a,则小正方形面积:大正方形面积=   ;
(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6此时空白部分的面积为   ;
【迁移运用】
如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.
知识补充:如图4,含60°的直角三角形,对边y:斜边x=定值k.
答案
一、选择题
B.B.C.C.C.C.B.B.D.D.
二、填空题
11.6.
12.10.
13.2.
14.45°.
15.直角三角形.
16.或.
17.3
18.6.
三、解答题
19.(1)∵△ABC是等腰直角三角形,
∴AB=BC,∠ABC=90°,∠A=∠ACB=45°,
同理可得:DB=BE,∠DBE=90°,∠BDE=∠BED=45°,
∴∠ABD=∠CBE,
在△ABD与△CBE中,
AB=BC,∠ABD=∠CBE,DB=BE,
∴△ABD≌△CBE(SAS).
(2)∵△BDE是等腰直角三角形,
∴DEBD,
∵△ABD≌△CBE,
∴∠A=∠BCE=45°,AD=CE,
∴∠DCE=∠ACB+∠BCE=90°,
∴DE2=DC2+CE2=AD2+CD2,
∴AD2+CD2=2.
20.存在.
如图所示,AP⊥PD,
∴∠APD=90°,
∴∠APB+∠DPC=90°,
又∵DC⊥BC,
∴∠DCP=90°,
∴∠PDC+∠DPC=90°,
∴∠APB=∠PDC,
∵∠B=∠C,
∴△ABP∽△PCD,
设BP=x,则CP=4﹣x,
∴,即4:(4﹣x)=x:1,
即x(4﹣x)=4,
则x2﹣4x+4=0,
即(x﹣2)2=0,
解得x=2,即BP=2.
21.以a,b,c为长度的线段首尾顺次相接形成的是直角三角形,
理由:∵m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,
∴c>a,
∵a2+b2=(2m)2+(m2﹣1)2=4m2+m4﹣2m2+1=(m2+1)2,
c2=(m2+1)2,
∴a2+b2=c2,
∴以a,b,c为长度的线段首尾顺次相接形成的是直角三角形.
22.(1)△ABC的面积为:2×22,
故答案为:2;
(2)由勾股定理得:AC2,BC,AB,
所以AC2+BC2=AB2,
即∠ACB=90°,
即△ABC是直角三角形,
故答案为:直角三角形;
(3)与△ABC全等的格点三角形是△DBC,△DAB,△DAC,
故答案为:△DBC,△DAB,△DAC.
23.(1)如图,连接AC,
在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2
∴AC=5cm,
在△ACD中,AC=5cmCD=12m,DA=13m,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°;
(2)∵S△ABC3×4=6,S△ACD5×12=30,
∴S四边形ABCD=6+30=36,
费用=36×80=2880(元).
答:铺满这块空地共需花费2880元.
24.在Rt△ABC中,∵∠ACB=90°,AC=5m,BC=12m,
∴AB=13m,
(1)如图1,当AB=AD时,CD=5m,
则△ABD的面积为:BD AC(5+5)×12=60(m2);
若延长BC到D,使CD=AC=12m,则△ABD的面积为AD×BC=60 (m2),
60﹣30=30 (m2);
(2)图2,当AB=BD时,CD=8m,则△ABD的面积为:BD AC(5+8)×12=78(m2);
78﹣30=48(m2);
(3)如图3,当DA=DB时,设AD=x,则CD=x﹣5,
则x2=(x﹣5)2+122,
∴x=16.9,
则△ABD的面积为:BD AC16.9×12=101.4(m2);
101.4﹣30=71.4(m2).
答:扩充后等腰三角形绿地的面积是30m2或48m2或71.4m2.
25.(1)梯形ABCD的面积为(a+b)(a+b)a2+abb2,
也利用表示为abc2ab,
∴a2+abb2abc2ab,
即a2+b2=c2;
(2)∵直角三角形的两直角边分别为3,4,
∴斜边为5,
∵设斜边上的高为h,直角三角形的面积为3×45×h,
∴h,
故答案为;
(3)∵图形面积为:(a﹣2b)2=a2﹣4ab+4b2,
∴边长为a﹣2b,
由此可画出的图形为:
26.[探索新知]由题意:大正方形的面积=(a+b)2=c2+4ab,
∴a2+2ab+b2=c2+2ab,
∴a2+b2=c2
【初步运用】(1)由题意:b=2a,ca,
∴小正方形面积:大正方形面积=5a2:9a2=5:9,
故故答案为5:9.
(2)空白部分的面积为=52﹣24×6=28.
故答案为28.
[迁移运用]结论:a2+b2﹣ab=c2.
理由:由题意:大正三角形面积=三个全等三角形面积+小正三角形面积
可得:(a+b)×k(a+b)=3b×kac×ck,
∴(a+b)2=3ab+c2
∴a2+b2﹣ab=c2.

展开更多......

收起↑

资源预览