资源简介 14.3.2 公式法第1课时 运用平方差公式因式分解学习目标1.进一步理解因式分解的意义.2.理解平方差公式的意义,弄清公式的形式和特征,会运用平方差公式分解因式.3.通过对比整式乘法和分解因式的关系,进一步发展逆向思维能力.学习策略1.结合实例掌握平方差公式形式和特征;2.牢记平方差公式.学习过程一.复习回顾:1.什么叫因式分解?2.平方差公式的内容?二.新课学习:知识点:利用平方差公式分解因式1.计算下列各式:(1) (a+5)(a-5);(2) (4m+3n)(4m-3n).【答案】(1)(a+5)(a-5)=a2-52=a2-25.(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.2.根据第1题的结果,利用数学“互逆”的思想分解因式:(1)a2-25;(2)16m2-9n2.【答案】(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).3.观察上述两个问题特征,我们可以得出两个数的平方差,等于这两个数的 与这两个数的 的 ,即a2-b2= .【答案】和;差;积;(a+b)(a-b)三.尝试应用:例1(1) 4a2-9 (2)(3x﹣2)2﹣(2x+7)2解:(1)4a2-9=(2a+3)(2a-3)(2)(3x﹣2)2﹣(2x+7)2=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)]=(5x+5)(x﹣9)=5(x+1)(x﹣9);例2 (1)101×99 (2) 30.8×29.2.(1)101×99=(100+1)×(100﹣1)=1002﹣12=10000﹣1=9999.(2)原式=(30﹣0.8)(30+0.8)=302﹣0.82=900﹣0.64=899.36.四.自主总结:a2-b2=(a+b)(a-b).即:两个数的平方差,等于这两个数的和与这两个数的差的积.五.达标测试一、选择题1.下列多项式中能用平方差公式分解因式的是( )A.a2+(﹣b)2 B.5m2﹣20mn C.﹣x2﹣y2 D.﹣x2+92. 分解因式x4﹣1的结果是( )A.(x+1)(x﹣1) B.(x2+1)(x2﹣1)C.(x2+1)(x+1)(x﹣1) D.(x+1)2(x﹣1)23. 如图,已知R=6.75,r=3.25,则图中阴影部分的面积为(结果保留π)( )A.3.5π B.12.25π C.27π D.35π4.因式分解x2y-4y的正确结果是( )A.y(x+2)(x-2) B.y(x+4)(x-4) C.y(x2-4) D.y(x-2)25.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+2b)(a-b)=a2+ab-2b2 B.a2-b2=(a+b)(a-b)C.(a+b)2=a2+2ab+b2 D.(a-b)2=a2-2ab+b2二、填空题6. 因式分解:9(x+y)2﹣(x﹣y)2= .7. 若m2-n2=6,且m-n=2,则3m+3n=__________.8. 小明抄在作业本上的式子x ﹣9y2(“ ”表示漏抄的指数),不小心漏抄了x的指数,他只知道该数为不大于5的正整数,并且能利用平方差公式分解因式,请你帮小明写出这个整式分解因式的结果: .三、解答题9. 因式分解:(1)a4-16a2;(2)(m2+m)2-(m+1)2.10.如图,在一块边长为a的正方形纸板的四周,各剪去一个边长为b(b<)的正方形.(1)用代数式表示阴影部分的面积;(2)利用因式分解的方法计算,当a=15.4,b=3.7时,求阴影部分的面积.参考答案1.D2.C3.D 解析:根据环形面积=大圆的面积-小圆的面积,然后代入数据计算.πR2-πr2=π(6.752-3.252)=π(6.75+3.25)(6.75-3.25)=35π.4.A 解析:先提取公因式y,再根据平方差公式进行因式分解即可求得答案.x2y-4y=y(x2-4)=y(x2-22)=y(x+2)(x-2).5. B 解析:因为图甲中阴影部分的面积=a2-b2,图乙中阴影部分的面积=(a+b)(a-b),而两个图形中阴影部分的面积相等,所以a2-b2=(a+b)(a-b).6. 4(2x+y)(x+2y).解:原式=[3(x+y)]2﹣(x﹣y)2=(3x+3y+x﹣y)(3x+3y﹣x+y)=(4x+2y)(2x+4y)=4(2x+y)(x+2y).7. 9 解析:因为m2-n2=6,且m-n=2,所以m2-n2=(m+n)(m-n)=2(m+n)=6,所以m+n=3,所以3m+3n=3(m+n)=3×3=9.8.解析:①当 =2时,x2﹣9y2=(x+3y)(x﹣3y),②当 =4时,x4﹣9y2=(x2+3y)(x2﹣3y),综上所述整式分解因式的结果:(x+3y)(x﹣3y)或(x2+3y)(x2﹣3y).6.(2n-1)(2n+1)=(2n)2-19.解:(1)a4-16a2;=a2(a2-16)=a2(a+4)(a-4);(2)(m2+m)2-(m+1)2=(m2+m+m+1)(m2+m-m-1)=(m+1)2 (m+1)(m-1)=(m+1)3(m-1).10.解:(1)阴影的面积a2-4b2,(2)当a=15.4,b=3.7时,原式=(a+2b)a-2b)=(15.4+7.4)(15.4-7.4)=22.8×8=182.4. 展开更多...... 收起↑ 资源预览