人教版八年级数学上学期 第十三章测试卷(含答案)

资源下载
  1. 二一教育资源

人教版八年级数学上学期 第十三章测试卷(含答案)

资源简介

(
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
) (
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
) (
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
)
人教版八年级数学上学期 第十三章测试卷
一、单选题(共11题;共22分)
1.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
2.下列图形中,不是轴对称图形的是( )
A. B. C. D.
3.下列图形中,不是轴对称图形的是(  )
A. B. C. D.
4.如图,在△ABC中,∠B=30°,BC 的垂直平分线交AB于E,垂足为D,如果 ED=5,则EC的长为( )
A. 5 B. 8 C. 9 D. 10
5.如图, , , ,若 ,则 ( )
A. B. C. D.
6.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是( )
A. 21:05 B. 21:15 C. 20:15 D. 20:12
7.已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )
A. 22cm和16cm B. 16cm和22cm C. 20cm和16cm D. 24cm和12cm
8.如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是(  )
A. β﹣α=60° B. β+α=210° C. β﹣2α=30° D. β+2α=240°
9.如图,Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是( )
A. 2cm B. 4cm C. 6cm D. 8cm
10.如图,P为∠AOB内一定点,M、N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=( )
A. 40° B. 45° C. 50° D. 55°
11.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则 =(  )
A. B. 2 C. D.
二、填空题(共8题;共16分)
12.如图,在平面直角坐标系中,O 是原点,已知 A(4,3),P 是坐标轴上的一点,若以 O, A,P 三点组成的三角形为等腰三角形,则满足条件的点 P 共有________ 个.
13.如图,△ABC中,AB=AC,AD是BC边上的中线,若∠BAC=70 ,则∠BAD=________ .
14题 15题
14.如图,在等腰三角形 中, 平分 , 于点D,腰 的长比底 多 , 的周长和面积都是 ,则 ________.
15.如图,已知 中, ,点 是线段 上的一动点,过点 作 交 于点 ,并使得 ,则 长度的取值范围是________.
16.如图,∠AOB=40°,M、N分别在OA、OB上,且OM=2,ON=4,点P、Q分别在OB、OA上,则MP+PQ+QN的最小值是 ________.
17题 18题
17.如图, 中,边AB的垂直平分线分别交AB、BC于点D、E,连接 若 , ,则 的周长为________.
18.如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是________.
19.定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2 时,称点M为PQ的等高点”,称此时MP+MQ的值为PQ的“等高距离”.已知P(1,2),Q(3,4),当PQ的“等高距离”最小时,则点M的坐标为________.
三、解答题(共4题;共17分)
20.如图,在四边形ABCD中,AB=AD , ∠ABC=∠ADC . 求证:BC=DC .
21.一个等腰三角形的一边长为8cm,周长为20cm,求其他两边的长.
22.如图,在△ABC 中,AB=AC,∠BAC=120°,D 为 BC 的中点,DE⊥AC 于点 E,AE=2,求 CE 的长.
23.如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C、D在边AB的同侧),连接CD,
(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;
(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;
(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立。
四、作图题(共1题;共10分)
24.如图,已知A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(5,2)
(1)在图中画出△ABC关于y轴对称的△A′B′C′,写出点A′,B′,C′的坐标;
(2)求△ABC的面积;
五、综合题(共3题;共35分)
25.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
(1)求∠ECD的度数;
(2)若CE=5,求BC的长.
26.如图,在等边三角形 中, ,点 是 边上的一点,过点 作 交 于点 ,过点 作 ,交 的延长线于点 .
(1)求证: 是等腰三角形;
(2)点 满足什么条件时,点 是线段 的三等分点?并计算此时 的面积.
27.如图
(1)如图1,在AB直线一侧有C,D两点,在AB上找一点P,使C,D,P三点组成的三角形的周长最短,找出此点并说明理由:
(2)如图2,在∠AOB内部有一点P,是否在OA,OB上分别存在点E,F,使得E,F,P三点组成的三角形的周长最短,找出E,F两点,并说明理由:
(3)如图3,在∠AOB内部有两点M,N,是否在OA,OB上分别存在点E,F,使得E,F, M,N,四点组成的四边形的周长最短,找出E,F两点,并说明理由.
答 案
一、单选题
1. C 2. C 3. C 4. D 5. D 6. A 7. A 8. B 9. D 10. A 11. A
二、填空题
12. 8. 13. 35 14. 15. 16. 17. 11 18. 19. (4,1)或(0,5)
三、解答题
20. 解: 连接BD ∵AB=AD ∴∠ABD=∠ADB 又∵∠ABC=∠ADC ∴∠DBC=∠BDC ∴BC=DC
21. 解:①底边长为8cm,则腰长为:(20﹣8)÷2=6,所以另两边的长为6cm,6cm,能构成三角形;
②腰长为8cm,则底边长为:20﹣8×2=4,底边长为4cm,另一个腰长为8cm,能构成三角形.
因此另两边长为6cm、6cm或8cm、4cm.
22. 解:如图,连接AD,
∵ AB=AC,∠BAC=120°,
∴∠B=∠C=30°,AD⊥BC,∠BAD=∠DAC=60°,
∴∠ADE=90°-∠DAE=30°,∴AD=2AE=4,∴AC=2AD=8,∴CE=AC-AE=8-2=6.
23. 解:(Ⅰ)∵△ABD是等边三角形 ∴∠BAD=∠ABD=60°,AB=AD
又∵∠BAC=30°∴AC平分∠BAD∴AC垂直平分BD∴CD=CB
∴∠DBC=∠DBC=∠ABC∠ABD=90°-60°=30°
(Ⅱ)△ABC是等腰三角形
理由:设∠BDC=x,BAC=2x
有∠CAD=60°-2X∠ADC=60°+x∴∠ACD=180°-∠CAD-∠ADC=60°+X∴∠ACD=∠ADC
∴AC=AD
∵AB=AD∴AB=AC∴△ABC是等腰三角形
(Ⅲ)当∠BCD=150°时,∠BAC=2∠BDC恒成立
如图,作等边△BCE,连接BE
∴BC=EC,∠BCE=60°∴∠BCD=150°
∵∠ECD=360°-∠BCD-∠BCE=150°∴∠DCE=∠DCB
又 ∵CD=CD
∴△BCD≌△ECD∴∠BDC=∠EDC∴∠BDE=2∠BDC
又∵∠BAC=∠BDE=60°
∵∠BAC=2∠BDC
四、作图题
24. (1)解:A′(﹣2,4),B′(3,﹣2),C′(﹣5,2)
(2)解:S△ABC=6×8﹣ ×2×3﹣ ×4×8﹣ ×5×6=14 .
五、综合题
25. (1)解:∵DE垂直平分AC,∠A=36°∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5
(2)解:∵AB=AC,∠A=36°,∴∠B=(180°-36°)÷2=72°.
∵∠BEC=∠A+∠ECA=72°,∴CE=CB,∴BC=EC=5
26. (1)证明:∵ 是等边三角形,
∴ ,
∵ ,∴
∵ ∴ ∴
∵ 是 的外角,且 ,
∴ ,∴ ,
∴ ,∴ 是等腰三角形.
(2)解: 是 的中点(或 ).
过点 作 ,交 于点
∵ ,∴ ,∴ 是等边三角形.
当点 是 的中点时,
在 中, , ,
∴ ,∴ .∴ .
27. (1)解:作点C关于直线AB的对称点C',连接DC',交AB于点P,在AB上取点P'(异于点P),连接CP,C'P,C'P',DP',
∴CP=C'P,DP'=C'P',
∴△CDP的周长为CP+CD+PD=C'P+CD+PD=C'D+CD,此时此三角形的周长最小.
∵在△C'P'D中,C'P'+DP'+CD>C'D+CD,
∴△CDP的周长小于△C'P'D的周长;
(2)解:作点P关于OA的对称点C,作点P关于OB的对称点D,连接CD,交OA于点E,角OB于点F,
则点E,F就是所求作的点,∴CE=PE,PF=DF,
∴△PEF的周长为PE+EF+PF=CE+EF+DF=CD,
两点之间线段最短,因此此时△PEF的周长最小.
在OA,OB上分别取不同于点E和点F的点E',F',
∴CE'=PE',PF'=DF'
∴PE'+E'F'+PF'=CE'+E'F'+DF'>CD,
即PE+EF+PF<PE'+E'F'+PF'.
(3)解:作点M关于OA的对称点C,点N关于OB对称点D,连接CD教OA于点E,交OB于点F,
则点E,F就是所求作的点.
∴CE=EM,FN=FD,
∴四边形MEFN的周长为MN+ME+EF+NF=MN+CE+EF+FD=CD+MN,
此时四边形MEFN的周长最短.
在OA,OB上分别取不同于点E和点F的点E',F',
∴CE'=ME',PF'=NF'
∴ME'+E'F'+NF'+MN=CE'+E'F'+DF'+MN>CD+MN,
即MN+ME+EF+NF<ME'+E'F'+NF'+MN.
(

- 1 -
页 共
11

)

展开更多......

收起↑

资源预览