2023年中考备考数学试题平行四边形解答题汇编(含答案)

资源下载
  1. 二一教育资源

2023年中考备考数学试题平行四边形解答题汇编(含答案)

资源简介

2023年中考数学试题平行四边形解答题汇编(含答案)
1.(2023 济南)已知:如图,点O为 ABCD对角线AC的中点,过点O的直线与AD,BC分别相交于点E,F.求证:DE=BF.
2.(2023 自贡)如图,在平行四边形ABCD中,点M,N分别在边AB,CD上,且AM=CN.求证:DM=BN.
3.(2023 绍兴)如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.
(1)求证:∠DAG=∠EGH;
(2)判断AH与EF是否垂直,并说明理由.
4.(2023 宿迁)如图,在矩形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E、F.求证:AF=CE.
5.(2023 大庆)如图,在平行四边形ABCD中,E为线段CD的中点,连接AC,AE,延长AE,BC交于点F,连接DF,∠ACF=90°.
(1)求证:四边形ACFD是矩形;
(2)若CD=13,CF=5,求四边形ABCE的面积.
6.(2023 沈阳)如图,在△ABC中,AB=AC,AD是BC边上的中线,点E在DA的延长线上,连接BE,过点C作CF∥BE交AD的延长线于点F,连接BF,CE.求证:四边形BECF是菱形.
7.(2023 浙江)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF.
(1)求证:AE=AF;
(2)若∠B=60°,求∠AEF的度数.
8.(2023 宁夏)如图,已知EF∥AC,B,D分别是AC和EF上的点,∠EDC=∠CBE.求证:四边形BCDE是平行四边形.
9.(2023 兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.
(1)判断四边形OCDE的形状,并说明理由;
(2)当CD=4时,求EG的长.
10.(2023 无锡)如图,△ABC 中,点D、E分别为AB、AC的中点,延长DE到点F,使得EF=DE,连接CF.求证:
(1)△CEF≌△AED;
(2)四边形DBCF是平行四边形.
11.(2023 长沙)如图,在 ABCD中,DF平分∠ADC,交BC于点E,交AB的延长线于点F.
(1)求证:AD=AF;
(2)若AD=6,AB=3,∠A=120°,求BF的长和△ADF的面积.
12.(2023 长春)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放,点A、E,B、D依次在同一条直线上,连接AF、CD.
(1)求证:四边形AFDC是平行四边形;
(2)已知BC=6cm,当四边形AFDC是菱形时,AD的长为    cm.
13.(2023 贵州)如图,在Rt△ABC中,∠C=90°,延长CB至D,使得BD=CB,过点A,D分别作AE∥BD,DE∥BA,AE与DE相交于点E.下面是两位同学的对话:
小星:由题目的已知条件,若连接BE,则可 证明BE⊥CD. 小红:由题目的已知条件,若连接CE,则可证明CE=DE.
(1)请你选择一位同学的说法,并进行证明;
(2)连接AD,若,求AC的长.
14.(2023 张家界)如图,已知点A,D,C,B在同一条直线上,且AD=BC,AE=BF,CE=DF.
(1)求证:AE∥BF;
(2)若DF=FC时,求证:四边形DECF是菱形.
15.(2023 菏泽)如图,在 ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.
16.(2023 岳阳)如图,点M在 ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM=DM;③∠3=∠4,选择一个合适的选项作为已知条件,使 ABCD为矩形.
(1)你添加的条件是    (填序号);
(2)添加条件后,请证明 ABCD为矩形.
17.(2023 十堰)如图, ABCD的对角线AC,BD交于点O,分别以点B,C为圆心,AC,BD长为半径画弧,两弧交于点P,连接BP,CP.
(1)试判断四边形BPCO的形状,并说明理由;
(2)请说明当 ABCD的对角线满足什么条件时,四边形BPCO是正方形?
18.(2023 温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.
(1)求证:BE=CF;
(2)当=,AD=4时,求EF的长.
19.(2023 随州)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若BC=3,DC=2,求四边形OCED的面积.
20.(2023 永州)如图,已知四边形ABCD是平行四边形,其对角线相交于点O,OA=3,BD=8,AB=5.
(1)△AOB是直角三角形吗?请说明理由;
(2)求证:四边形ABCD是菱形.
21.(2023 内江)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.
(1)求证:FA=BD;
(2)连接BF,若AB=AC,求证:四边形ADBF是矩形.
22.(2023 乐山)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.
(1)求证:四边形ECFD是矩形;
(2)若CF=2,CE=4,求点C到EF的距离.
23.(2023 杭州)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.
(1)若ED=,求DF的长.
(2)求证:AE CF=1.
(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.
24.(2023 扬州)如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF、CE相交于点M,连接AG、CH相交于点N.
(1)求证:四边形AMCN是平行四边形;
(2)若 AMCN的面积为4,求 ABCD的面积.
25.(2023 株洲)如图所示,在△ABC中,点D、E分别为AB、AC的中点,点H在线段CE上,连接BH,点G、F分别为BH、CH的中点.
(1)求证:四边形DEFG为平行四边形;
(2)DG⊥BH,BD=3,EF=2,求线段BG的长度.

26.(2023 怀化)如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.
(1)证明:△BOF≌△DOE;
(2)连接BE、DF,证明:四边形EBFD是菱形.
27.(2023 新疆)如图,AD和BC相交于点O,∠ABO=∠DCO=90°,OB=OC,点E、F分别是AO、DO的中点.
(1)求证:OE=OF;
(2)当∠A=30°时,求证:四边形BECF是矩形.
28.(2023 广安)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E、F,且AF=CE,∠BAC=∠DCA.求证:四边形ABCD是平行四边形.
29.(2023 南充)如图,在 ABCD中,点E,F在对角线AC上,∠CBE=∠ADF.
求证:(1)AE=CF;
(2)BE∥DF.
参考答案
一.解答题(共29小题)
1.【解答】证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠EAO=∠FCO,∠OEA=∠OFC,
∵点O为对角线AC的中点,
∴AO=CO,
在△AOE和△COF中,

∴△AOE≌△COF(AAS),
∴AE=CF,
∴AD﹣AE=BC﹣CF,
∴DE=BF.
2.【解答】证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵AM=CN,
∴AB﹣AM=CD﹣CN,
即BM=DN,
又∵BM∥DN,
∴四边形MBND是平行四边形,
∴DM=BN.
3.【解答】(1)证明:在正方形ABCD中,AD⊥CD,GE⊥CD,
∴∠ADE=∠GEC=90°,
∴AD∥GE,
∴∠DAG=∠EGH.
(2)解:AH⊥EF,理由如下.
连结GC交EF于点O,如图:
∵BD为正方形ABCD的对角线,
∴∠ADG=∠CDG=45°,
又∵DG=DG,AD=CD,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG.
在正方形ABCD中,∠ECF=90°,
又∵GE⊥CD,GF⊥BC,
∴四边形FCEG为矩形,
∴OE=OC,
∴∠OEC=∠OCE,
∴∠DAG=∠OEC,
由(1)得∠DAG=∠EGH,
∴∠EGH=∠OEC,
∴∠EGH+∠GEH=∠OEC+∠GEH=∠GEC=90°,
∴∠GHE=90°,
∴AH⊥EF.
4.【解答】证明:∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF.
又BE⊥AC,DF⊥AC,
∴∠AEB=∠CFD=90°.
在△ABE与△CDF中,

∴△ABE≌△CDF(AAS),
∴AE=CF,
∴AE+EF=CF+EF,
即AF=CE.
5.【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ADE=∠FCE,∠DAE=∠CFE,
∵E为线段CD的中点,
∴DE=CE,
∴△ADE≌△FCE(AAS),
∴AE=FE,
∴四边形ACFD是平行四边形,
∵∠ACF=90°,
∴四边形ACFD是矩形;
(2)解:∵CD=13,CF=5,
∴BC=CF=5,
∵四边形ACFD是矩形,
∴∠CFD=90°,AC=DF,
∴DF===12,
∵△ADE≌△FCE,
∵△CEF的面积=△ACF的面积=5×12=15,
平行四边形ABCD的面积=BC AC=5×12=60,
∴四边形ABCE的面积=平行四边形ABCD的面积﹣△CEF的面积=60﹣15=45.
6.【解答】证明:∵AB=AC,AD是BC边上的中线,
∴AD垂直平分BC,
∴EB=EC,FB=FC,
∵CF∥BE,
∴∠BED=∠CFD,∠EBD=∠FCD,
∵DB=CD,
∴△EBD≌△FCD(AAS),
∴BE=FC,
∴EB=BF=FC=EC,
∴四边形EBFC是菱形.
7.【解答】(1)证明:∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D.
又∵AE⊥BC于点E,AF⊥CD于点F,
∴∠AEB=∠AFD=90°,
在△ABE与△ADF中,
∵.
∴△ABE≌△ADF(AAS).
∴AE=AF;
(2)解:∵四边形ABCD是菱形,
∴∠B+∠BAD=180°.
而∠B=60°,
∴∠BAD=120°.
又∵∠AEB=90°,∠B=60°,
∴∠BAE=30°.
由(1)知△ABE≌△ADF,
∴∠BAE=∠DAF=30°.
∴∠EAF=120°﹣30°﹣30°=60°.
∴△AEF是等边三角形.
∴∠AEF=60°.
8.【解答】证明:∵EF∥AC,
∴∠EDC+∠C=180°,
又∵∠EDC=∠CBE,
∴∠CBE+∠C=180°,
∴EB∥DC,
∵DE∥BC,BE∥CD,
∴四边形BCDE是平行四边形.
9.【解答】解:(1)四边形OCDE是菱形,理由如下:
∵CD∥OE,
∴∠FDC=∠FOE,
∵CE是线段OD的垂直平分线,
∴FD=FO,ED=OE,CD=CO,
在△FDC和△FOE中,

∴△FDC≌△FOE(ASA),
∴CD=OE,
又ED=OE,CD=CO,
∴ED=OE=CD=CO,
∴四边形OCDE是菱形.
(2)∵四边形ABCD为矩形,
∴∠BCD=∠CDA=90°,DO=CO,
∵CE是线段OD的垂直平分线,
∴CD=CO,
∴CD=CO=DO,
∴△ODC为等边三角形,
∴DO=CD=4,∠ODC=60°,
∴,
在Rt△CDF中,CD=4,DF=2,
由勾股定理得:,
由(1)可知:四边形OCDE是菱形,
∴,
∵∠GDF=∠CDA﹣∠ODC=30°,
∴,
∴,
∴.
10.【解答】证明:(1)∵点D、E分别为AB、AC的中点,
∴AE=CE,
在△CEF与△AED中,

∴△CEF≌△AED(SAS);
(2)由(1)证得△CEF≌△AED,
∴∠A=∠FCE,
∴BD∥CF,
∵DF∥BC,
∴四边形DBCF是平行四边形.
11.【解答】(1)证明:在 ABCD中,∵AB∥CD,
∴∠CDE=∠F,
∵DF平分∠ADC,
∴∠ADE=∠CDE,
∴∠F=∠ADF,
∴AD=AF,
(2)解:∵AD=AF=6,AB=3,
∴BF=AF﹣AB=3;
过D作DH⊥AF交FA的延长线于H,
∵∠BAD=120°,
∴∠DAH=60°,
∴∠ADH=30°,
∴AH=,
∴=3,
∴△ADF的面积=.
12.【解答】(1)证明:∵△ACB≌△DFE,
∴AC=DF,∠CAB=∠FDE,
∴AC∥DF,
∴四边形AFDC是平行四边形;
(2)解:连接CF交AD于O,
∵∠ACB=90°,∠CAB=30°,BC=6cm,
∴AC=BC=6(cm),
∵四边形AFDC是菱形,
∴CF⊥AD,AD=2AO,
∴∠AOC=90°,
∴AO=AC==9(cm),
∴AD=2AO=18cm,
故答案为:18.
13.【解答】(1)证明:小星:连接BE,
∵AE∥BD,DE∥BA,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵BD=BC,
∴AE=BC,
∵AE∥BC,
∴四边形AEBC是平行四边形,
∵∠C=90°,
∴四边形AEBC是矩形,
∴∠EBC=90°,
∴BE⊥CD;
小红:连接BE,CE,
∵AE∥BD,DE∥BA,
∴四边形ABDE是平行四边形,
∴AE=BD,AB=DE,
∵BD=BC,
∴AE=BC,
∵AE∥BC,
∴四边形AEBC是平行四边形,
∵∠C=90°,
∴四边形AEBC是矩形,
∴AB=CE,
∴DE=CE;
(2)连接AD,
∵,
∴设CB=2k,AC=3k,
∴CD=4k,
∵AC2+DC2=AD2,
∴(3k)2+(4k)2=(5)2,
∴k=,
∴AC=3.
14.【解答】证明:(1)∵AD=BC,
∴AD+CD=BC+CD,
∴AC=BD,
∵AE=BF,CE=DF,
∴△AEC≌△BFD(SSS),
∴∠A=∠B,
∴AE∥BF;
(2)∵△AEC≌△BFD(SSS),
∴∠ECA=∠FDB,
∴EC∥DF,
∵EC=DF,
∴四边形DECF是平行四边形,
∵DF=FC,
∴四边形DECF是菱形.
15.【解答】证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,∠BAD=∠BCD,
∵AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F,
∴∠BAE=∠FCD,
在△ABE与△CDF中,

∴△ABE≌△CDF(ASA),
∴AE=CF.
16.【解答】(1)解:①当∠1=∠2时, ABCD为矩形;
②当AM=DM时, ABCD为矩形,
故答案为:①②;
(2)证明:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴∠A+∠D=180°,
在△ABM和DCM中,

∴△ABM≌DCM(SAS),
∴∠A=∠D,
∴∠A=∠D=90°,
∴ ABCD为矩形,
17.【解答】解:(1)四边形BPCO为平行四边形.
理由:∵四边形ABCD为平行四边形,
∴OC=OA=AC,OB=OD=BD,
∵以点B,C为圆心,AC,BD长为半径画弧,两弧交于点P,
∴OB=CP,BP=OC,
∴四边形BPCO为平行四边形;
(2)当AC⊥BD,AC=BD时,四边形BPCO为正方形.
∵AC⊥BD,
∴∠BOC=90°,
∵AC=BD,OB=BD,OC=AC,
∴OB=OC,
∵四边形BPCO为平行四边形,
∴四边形BPCO为正方形.
18.【解答】(1)证明:∵FH⊥EF,
∴∠HFE=90°,
∵GE=GH,
∴,
∴∠E=∠GFE,
∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
∴△ABF≌△DCE(AAS),
∴BF=CE,
∴BF﹣BC=CE﹣BC,
即BE=CF;
(2)解:∵四边形ABCD是矩形,
∴DC⊥BC,即DC⊥EF,AB=CD,BC=AD=4,
∵FH⊥EF,
∴CD∥FH,
∴△ECD∽△EFH,
∴,
∴,
∵,
∴,
设BE=CF=x,
∴EC=x+4,EF=2x+4,
∴,
解得x=1,
∴EF=6.
19.【解答】(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵矩形ABCD的对角线AC,BD相交于点O,
∴AC=BD,OC=AC,OD=BD,
∴OC=OD,
∴四边形OCED是菱形;
(2)解:∵四边形ABCD是矩形,BC=3,DC=2,
∴OA=OB=OC=OD,S矩形ABCD=3×2=6,
∴S△OCD=S矩形ABCD=×6=1.5,
∵四边形OCED是菱形,
∴菱形OCED的面积=2S△OCD=2×1.5=3.
20.【解答】(1)解:△AOB是直角三角形,理由如下:
∵四边形ABCD是平行四边形,BD=8,
∴OB=OD=BD=4,
∵OA=3,OB=4,AB=5,
∴OA2+OB2=AB2,
∴△AOB是直角三角形,且∠AOB=90°;
(2)证明:由(1)可知,∠AOB=90°,
∴AC⊥BD,
∴平行四边形ABCD是菱形.
21.【解答】(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,∠FAE=∠CDE,
又∵E为AD的中点,
∴AE=DE,
∴△AEF≌△DEC(AAS),
∴AF=DC,
又∵D为BC的中点,
∴BD=CD,
∴AF=BD;
(2)证明:∵AF=BD,AF∥BD,
∴四边形ADBF是平行四边形,
∵AB=AC,D为BC的中点,
∴AD⊥BC,
∴∠ADB=90°,
∴四边形ADBF是矩形.
22.【解答】(1)证明:∵FD∥CA,BC∥DE,
∴四边形ECFD为平行四边形,
又∵∠C=90°,
∴四边形ECFD为矩形;
(2)解:过点C作CH⊥EF于H,
在Rt△ECF中,CF=2,CE=4,
∴EF===2,
∵S△ECF=×CF CE=×EF CH,
∴CH==,
∴点C到EF的距离为.
23.【解答】(1)解:∵四边形ABCD是正方形,
∴AD∥BC,AB=AD=BC=CD=1,
∴△DEF∽△CBF,
∴,
∴,
∴DF=;
(2)证明:∵AB∥CD,
∴∠ABE=∠F,
又∵∠A=∠BCD=90°,
∴△ABE∽△CFB,
∴,
∴AE CF=AB BC=1;
(3)解:设EG=ED=x,则AE=AD﹣AE=1﹣x,BE=BG+GE=BC+GE=1+x,
在Rt△ABE中,AB2+AE2=BE2,
∴1+(1﹣x)2=(1+x)2,
∴x=,
∴DE=.
24.【解答】解:(1)∵点E、F、G、H分别是平行四边形ABCD各边的中点,
∴AH∥CF,AH=CF,
∴四边形AFCH是平行四边形,
∴AM∥CN,
同理可得,四边形AECG是平行四边形,
∴AN∥CM,
∴四边形AMCN是平行四边形;
(2)如图所示,连接AC,
∵H,G分别是AD,CD的中点,
∴点N是△ACD的重心,
∴CN=2HN,
∴S△ACN=S△ACH,
又∵CH是△ACD的中线,
∴S△ACN=S△ACD,
又∵AC是平行四边形AMCN和平行四边形ABCD的对角线,
∴S平行四边形AMCN=S平行四边形ABCD,
又∵ AMCN的面积为4,
∴ ABCD的面积为12.
25.【解答】(1)证明:∵点D、E分别为AB、AC的中点,点G、F分别为BH、CH的中点,
∴DE是△ABC的中位线,GF是△HBC的中位线,
∴DE∥BC,DE=BC,GF∥BC,GF=BC,
∴DE∥GF,DE=GF,
∴四边形DEFG为平行四边形;
(2)解:∵四边形DEFG为平行四边形,
∴DG=EF=2,
∵DG⊥BH,
∴∠DGB=90°,
∴BG===,
即线段BG的长度为.
26.【解答】(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EDO=∠FBO,
∵点O是BD的中点,
∴DO=BO,
又∵∠EOD=∠FOB,
∴△BOF≌△DOE(ASA);
(2)证明:由(1)已证△BOF≌△DOE,
∴BF=DE,
∵四边形ABCD是矩形,
∴AD∥BC,即DE∥BF,
∴四边形EBFD是平行四边形,
∵EF⊥BD,
∴四边形EBFD是菱形.
27.【解答】证明:(1)∵∠ABO=∠DCO=90°,
∴AB∥CD,
∴∠A=∠D,
在△AOB与△DOC中,

∴△AOB≌△DOC(AAS),
∴AO=DO,
∵点E、F分别是AO、DO的中点,
∴,
∴OE=OF;
(2)∵OB=OC,OE=OF,
∴四边形BECF是平行四边形,
∵∠A=30°,
∴,
∵OE=OF,
∴,
∴∠EBF=90°,
∴四边形BECF是矩形.
28.【解答】证明:∵AF=CE,
∴AF﹣EF=CE﹣EF.
∴AE=CF.
∵∠BAC=∠DCA,
∴AB∥CD.
∴∠BAE=∠DCF.
在△ABE与△CDF中,

∴△ABE≌△CDF(ASA).
∴AB=CD.
∴四边形ABCD是平行四边形.
29.【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAF=∠BCE,
在△ADF与△CBE中,

∴△ADF≌△CBE(ASA),
∴AF=CE,
∴AF﹣EF=CE﹣EF,
∴AE=CF;
(2)∵△ADF≌△CBE,
∴∠AFD=∠CEB,
∴BE∥DF.

展开更多......

收起↑

资源预览