资源简介 《2.1认识一元二次方程》学历案第1课时导 读本节内容为认识一元二次方程第一课时,一元二次方程是在一元一次方程基础上“次”的推广,同时它是解决诸多问题的方程需要,为勾股定理、形似等知识提供运算工具,是二次函数的基础.学习过程分为三个任务驱动,凸显任务与目标的对应,同时强化学以致用,实现教、学、评的一致性.【课题与课时】课题:北京师范大学出版社初中数学九年级上册(2014版),第二章 2.1.1认识一元二次方程课时:1课时【课标要求】1.通过建立一元二次方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.2.将不同形式的一元二次方程统一为一般形式.学生从数学符号的角度体会、概括出数学模型的简洁和必要.针对“二次”规定a≠0的条件,完善一元二次方程的概念,学生能够将一元二次方程整理成一般形式,准确地说出方程的各项系数,并能确定简单的字母系数方程的一元二次方程的条件.【学习目标】1.经历由具体问题抽象出一元二次方程概念的过程,理解并掌握一元二次方程的概念.2.知道一元二次方程的一般形式,会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数.3.体会并建立一元二次方程数学模型.【设计分析】目标序号 知识维度 (指事实性知识、概念性知识、程序性知识、元认知知识) 认知水平维度记忆/回忆 理解 应用 分析 评价 创造1 √ √ √ √2 √ √ √ √ √ √ √3 √ √ √ √【评价任务】1.独立完成任务一:5,6,7(检测目标1)2.独立完成任务二:1,2(检测目标2)3.合作完成任务三:1,2,3(检测目标3)【学习提示】 阅读评价任务,明确本节内容有几个任务需要完成,每个任务要怎样完成,完成以后的检测评价内容是什么,同时明确针对目标的评价标准,有效引导自己学习.【资源与建议】本节针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式.2.本主题的学习按以下流程进行:通过实际问题建立一元二次方程模型→一元二次方程的概念→探究一元二次方程的一般形式、项、系数.3.本主题的重点是一元二次方程的概念及一般形式. 难点是由实际问题向数学问题的转化过程并正确识别一般式中的“项”及“系数”.【学习提示】 在开始本节课学习之前,先认真阅读以上资源与建议,明确这节课内容的出处、知识的前后联系、学习的路径、学习的重难点及突破的途径,为顺利完成以下学习内容作好准备.【课时任务与驱动建议】【学习过程】学前准备:1.什么叫方程?我们学过哪些方程?2.什么叫一元一次方程?猜想:什么叫做一元二次方程呢?任务一:实际问题建立一元二次方程模型引出一元二次方程概念(指向目标1)1.小组合作探究1:幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2 的地毯 ,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?解:如果设所求的宽为 x m ,根据题意,可得方程:( 8 - 2x)( 5 - 2x)= 182.小组合作探究2:观察下面等式:10+ 11 + 12 = 13 + 14你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?解:如果设五个连续整数中的第一个数为x,根据题意,可得方程:x + (x + 1) + (x + 2) = (x + 3) + (x + 4)3.小组合作探究3:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?解:设梯子底端滑动x m ,根据题意,可得方程:7 + (x + 6) = 10.化简,得:(1)2x - 13x + 11 = 0(2)x - 8x - 20=0(3)x + 12 x - 15 = 04.独立思考:观察并归纳出共同特征类比一元一次方程归纳一元二次方程概念只含有 x的 方程,并且都可以化为 的形式,这样的方程叫做一元二次方程.强调:(1)是整式方程;(2)含一个未知数;(2)未知数最高次数是25.下列方程中,是关于x的一元二次方程的是( )(检测目标1)x(x-2)=0 B. x2-1-y=0 C .x2+1=x2-2x D. ax2+c=06. 已知关于x的方程是一元二次方程其中的取值( )(检测目标1)A.>2 B.<2 C.≥2 D.≠27.当= 时,方程是关于的一元二次方程.(检测目标1)(评价最高标准:第5-7题答案正确+3,最高9分)任务二:一元二次方程的一般形式(指向目标2)1.独立思考一元二次方程的一般形式是: , 称为二次项, 称为二次项系数, 称为一次项, 称为一次项系数, 称为常数项.(检测目标2)2.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:(检测目标2)方程 一般形式 二次项系数 一次项系数 常数项(评价最高标准:每空+1,最高12分)任务三:建立一元二次方程数学模型(指向目标3)利用生活中的实际问题,如单循环比赛,握手游戏,送礼物以及道路问题,让学生建立一元二次方程数学模型.小组合作探究:1 .要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划天,每天安排场比赛设比赛组织者应邀请个队参赛,则满足的关系式为( )(检测目标3)A. B. C. D.2.参加一次活动的每个人都和其他人各握了一次手,所有人共握手次,有多少人参加活动?设有人参加活动,可列方程为( )(检测目标3)A. B. C. D.3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,则设道路的宽为xm,根据题意,列方程( )(检测目标3)A.32×20﹣20x﹣30x=540B.32×20﹣20x﹣30x﹣x2=540C.(32﹣x)(20﹣x)=540D.32×20﹣20x﹣30x+2x2=540(评价最高标准:答案正确每题+3,最高9分,达到6分以上说明目标3达成.)【作业与检测】基础知识题(必做题) 每题3分,满分9分,我的得分1.下列关于的方程是一元二次方程的是( )(检测目标1)A. B. C. D.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值( ) (检测目标2)A.1 B.1或2 C.2 D.±13.方程的一般形式是 ,其中二次项系数是,一次项系数是 ,常数项是 .(检测目标2)综合能力提升(学有余力的选做),每题3分,满分9分,我的得分4.关于的一元二次方程(a-9)x|a|-7+8x+1=0是一元二次方程,则的值为(检测目标1) 5.方程,当 = 时为一元一次方程;当= 时为一元二次方程.(检测目标1)6.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的...病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类.在某次冠状病毒感染中,有.只动物被感染,后来经过两轮感染后共有...只动物被感染.若每轮感染中平均一只动物会感染.只动物,则下面所列方程正确的是( ) (检测目标3)A.3x(x+1)=363B.3+3x+3x =363C.3(1+x) =363D.3+3(1+x)+3(1+x) =363【自我评价】对标 评价标准 等级(A等级,B等级,C等级,) 对应知识短板目标1 理解并掌握一元二次方程的概念.目标2 会把一个一元二次方程化为一般形式,并能正确地判断一元二次方程的项与系数.目标3 体会并建立一元二次方程数学模型.合计【学后反思】完善思维导图,梳理本节课学习的知识内容和数学思想方法:本课学习涉及的数学思想方法有:【学习提示】对本节的学习进行归纳形成知识框架,并从学习经历中反思学会了什么,存在什么问题及掌握了那些解决数学问题的方法. 展开更多...... 收起↑ 资源预览