高教版《计算机应用基础》二进制那些事——计算机中的数制转换教学设计

资源下载
  1. 二一教育资源

高教版《计算机应用基础》二进制那些事——计算机中的数制转换教学设计

资源简介

【课题】二进制那些事——计算机中的数制转换
【课时】1课时
【设计理念】计算机机中数制的表示,作为计算机基础的重要内容,是需要我们同学理解和掌握的。在当前时代的背景下,结合互联网的信息浪潮,凸显知识的互溶性和交互性,以及职教特色的教育理念,理论联系实际,寓教于乐。整个教学过程采用任务学习,整个教学过程围绕“魔术星座卡片”的解密与制作来展开,结合二进制图形的游戏,进一步激发学生的学习积极性,使相对单调的理论内容与鲜活的生活实际结合起来。同时,在课堂教学和翻转教学中使用移动终端,借助“蓝墨云班课”进行了有益的尝试。课堂更多的是剖析、深化知识点,环环相扣,现场的提问互动,游戏展示又让学生在寓教于乐的氛围中学习。结合信息化优势搭建学习平台,开展有效教学,有助于学生的实践操作能力的提高,同时培养学生的交流合作能力。
【学情简析】
所授教学生是16电子商务班,班级人数为40人。通过微信公众平台和蓝墨云班课的前置学习,对教学内容有部分了解。
【教学目标】
知识目标:(1)掌握进位制概念;;(2)理解进制的本质;;(3)掌握十进制和二进制的相互转换;;(4)了解计算机所采用的数制及计算机采用二进制数;
能力目标:掌握二进制数和十进制数转换以及运算规则;
情感目标:对学生思维能力进行拓展,激发他们探索计算机奥秘的兴趣,培养学生的团队协作能力。
【教学重点】
(1)进制的本质组成;
(2)十进制与二进制间的相互转换
【教学难点】
十进制与二进制间的相互转换
【教学主要形式】翻转教学、小组讨论、多维评价
【课前准备】
蓝墨云班课app学习平台,用于翻转课堂前置学习以及课堂内的在线学习,在线评价等。实现资源共享和课堂实时互动。
学生分组:分组时注意学生层次的合理搭配,每组设立一名组长,负责任务指导和组内协调。
【教学过程】
课程导入
魔术星座卡片:
你所选的星座在那几张卡片中有?
◆问题1:每一列的图标排布有什么特点?相互之间又有什么关系呢?
◆问题2:老师是如何 “猜”中你手中的牌呢?
了解二进制
师:大家都知道,在我们日常生活中使用的是十进制,比如1元=10角,1角=10分等等,但是,在我们计算机中使用的进制数呢是二进制。二进制只有两个字符,0和1,虽然字符数字少,却有着天然的优势,简单而又稳定,对计算机的发展产生了深远的影响。可以这么说,没有二进制就没有计算机。当然,除了十进制和二进制以外,我们还有其他的进制,如五进制,八进制,十六进制等等。我们古代有句成语,叫作“半斤八两”,你们知道是什么意思吗?其实这里的半斤就是八两,那有些同学疑惑了,半斤不是五两吗,怎么是八两了呢?其实啊,我们古代采用的重量计数制不是十进制,而是十六进制,所以一般就是八两。我们的老祖宗很聪明,不光会用十六进制来计量重量,在老子的时期就已经在开始采用二进制,这个八卦图形大家一定不陌生吧。所谓“太极生两仪,两仪生四象,四象衍八卦”就是这个意思,这里的太极就是二进制的雏形。无独有偶,计算机开山始祖,冯。诺依曼也采用了二进制数来运用我们的计算机,从而使计算机在短短的时间里就能够服务于我们的生活,也奠定了计算机的基础。
生:学生讨论,各抒己见
师:那么,同学们,我们一起来谈谈吧。
为什么计算机采用二进制?
在计算机内部通常用二进制代码来作为内部存储、传输和处理数据。
一、可行性 使用二进制数,只需0,1两个状态,技术上轻而易举,如开关的通与断,晶体管中导通与截止等,磁介质的带磁与不带磁。
二、可靠性 二进制只有两种状态,数字传输处理不易出错。
三、简易性 二进制运算法则比较简单,如:
求和法则(3个) :0+0=0 , 0+1=1+0=1, 1+1=10
求积法则(3个) :0×0=0,0×1=1×0=0, 1×1=1
这就使计算机运算器的结构大大简化,控制也简单
四、逻辑性 可用进制的0,1直接代表逻辑代数中的“假”和“真”
二进制与十进制
数制 十进制 二进制
基 数 10 2
数 码 0-9 1、0
进位规则 逢十进一 逢二进一
表示方法 给数串添加圆括号,并把对应的基数作为下标
示例 (13)10 (1001)2
二进制转十进制的方法
例1:将(1101)2这个二进制数转换成十进制数
(1101)2 =1×23+1×22+0×21+1×20=8+4+0+1=13
每位数码对应的数值乘以相应的位权—(位权展开法)
练习一:二进制转十进制
(110)2=1×22+1×21+0×20=(6)10
(1010)2=1×23+0×22+1×21+0×20=(10)10
(11011)2=1×24+1×23+0×22+1×21+1×20=(27)10
问题3老师是如何制作这些卡片的呢?
问题3老师是如何制作这些卡片的呢?
十进制转二进制
例2:将(19)10这个十进制数转换成二进制数
练习二:十进制转二进制
(8)10=(1000)2
(17)10=(10001)2
(31)10=(11111)2
【总结、板书】
【拓展练习】

展开更多......

收起↑

资源预览